

Linear Bushing Series

Linear Bushing / Guide Ball Bushing / LM Stroke

Lineup

Contents

Linear Bushing

►►►P3

3 4
1 1
5
כ 7 ג
, 17 17
17
18 19 21 23 26

Dimensional Drawing, Dimensional Table

Model I M	27
Model I M-GA (Metal Retainer Type)	29
Model I M-MG (Stainless Steel Type)	31
Model I ME	33
	25
	30
	37
Model LMF-M (Stainless Steel Type)	39
Model LMF-L	41
Model LMF-ML (Stainless Steel Type)	43
Model LMIF	45
Model LMIF-L	47
Model LMCF-L	49
Model LMK	51
Model LMK-M (Stainless Steel Type)	53
Model I MK-I	55
Model I MK-MI (Stainless Steel Type)	57
Model I MIK	50
Model LMIK-I	61
	63
	65
	00
	67
	69
Model LMH-M (Stainless Steel Type)	71
Model LMH-L	73
Model LMH-ML (Stainless Steel Type)	75
Model LMIH	77
Model LMIH-L	79
Model LMCH-L	81
Models SC6 to 30	83
Models SC35 to 50	85
Model SL	87
Model SH	89
Model SH-L	91
Standard LM Shafts	93
Specially Machined Types	94
Dedicated Shafts	95
LM Shaht End Support Model SK	96
 Table of Rows of Balls and Masses for Clearance-adjustable Types 	
and Open Types of the Linear Bushing	96
Point of Design	97
Assembling the Linear Bushing	97
Ontions	103
Lubrication	103
Material and Surface Treatment	103
Nust prevention	103
	104
Model No.	105
Model Number Coding	105
Precautions on Use	107

Guide Ball Bushing

Guide Ball Bushing Features and Types Features of the Guide Ball Bushing • Structure and Features • Examples of Changing the Linear Bushing to the Guide Ball Bushing. Types of the Guide Ball Bushing • Types and Features	110 111 111 111 112 113 113
Point of Selection Flowchart for Selecting a Guide Ball Bushing • Steps for Selecting a Guide Ball Bushing Rated Load and Nominal Life • Load Rating • Calculating the Nominal Life Accuracy Standards	114 114 115 115 115 115 117
Dimensional Drawing, Dimensional Table Model LG	119
Point of Design Assembling the Guide Ball Bushing	121 121
Options • Lubrication • Dust prevention	123 123 123
Model No. Model Number Coding	124 124
Precautions on Use	125

► ► **P**128

LM Stroke

LM Stroke Models ST, ST-B and STI	129
Structure and Features	129
Types and Features	130
Rated Load and Nominal Life	131
Accuracy Standards	133
• Fit	
ST Shaft	
Installation of the ST Shaft	
Dimensional Drawing, Dimensional Table	
Models ST / ST-B	135
Models STUU/STUUB	
Miniature Stroke Model MST	
Structure and Features	139
• Fit	140
Travel Distance of the Ball Cage	140
Dimensional Drawing, Dimensional Table	
Model MST	141
Die-setting Ball Cage Models KS and BS	
Structure and Features	143
Rated Load and Service Life	143
• Fit	144
Installation of the Ball Cage	
Dimensional Drawing, Dimensional Table	
Models KS / BS	145
Model No.	
Model Number Coding	146
Precautions on Use	147

Features and Types Linear Bushing

Features of the Linear Bushing

Fig.1 Structure of Linear Bushing Model LM…UU

Structure and Features

Linear Bushing is a product used in combination with a cylindrical LM shaft to perform straight motion. The balls in the loaded area of the nut are in point contact with the LM shaft. This allows straight

motion with minimal friction resistance and achieves smooth motion.

The nut uses high-carbon chromium bearing steel and its outer and inner surfaces are ground after being heat-treated.

Linear Bushing is used for office equipment, medical equipment, packaging machines, etc. without vibration, impact, etc. with light load.

However, it cannot be used with load in the rotational direction.

[Interchangeability]

The Linear Bushing and LM shaft are interchangeable with each other, so they can be used in combination freely.

[Low Noise]

The standard type contains a retainer integral-molded with resin to prevent the balls from falling, so lownoise smooth operation is possible.

[Wide Array of Types]

A wide array of types are available, such as standard type, clearance-adjustable type, open type, long type, flange type, Fitted flange type, center flange type and LM case unit, allowing the user to select a type that meets the intended use.

Classification table of the Linear Bushing

Classification Table

5 THK

Model No. - Size list

Flange-less Type													
	Standard	Clearance-	, Open	Standard	Clearance	Open	Standard	Clearance-	, Open	Standard	Clearance-	Open	
	type	adjustable type	type	type	adjustable i type	type	type	adjustable	type	type	adjustable type	type	
			 					-71**			1		
	A			A			5			ത	6		
	Q.			S		Ø							
Size	LM	i LM-AJ	LM-OP	LM-GA	iLM-GA-AJi	LM-GA-OP	LM-MG	LM-MG-AJ	LM-MGA-OP	LME	LME-AJ	LME-OP	
		I	 		I I			 	 		1	 	
		I I	, ,					, 	, 		1		
	\mathbf{A}	I I	I I		· · ·			' 	' 		I	1	
	QL	I I	l I		I I			I I	 		I I	l	
	LM-L	1	 					- 	- 		I I		
		I I	 		ı I			I I	I I		l	 	
3		 			 			 	 		I		
4		 	 		 			 	 				
5			 						 	0			
6	0		 	0									
0	0		 	0					 	0	0		
10			• 			\bigcirc			1 				
12			\square										
16						0				\cap			
20				0		0				0			
25	0			0		0	•			0			
30	0			0		0				0			
35	0			0		0					1	1	
38		1	1	0		\bigcirc							
40	0	0	0	0		0				0	\bigcirc	0	
50	0	0	0	0	\bigcirc	\bigcirc		 	i 	0	\bigcirc	0	
60	0	0	0	0	\circ	\bigcirc				0	\circ	0	
80		1	1	0		\bigcirc		1	1	0	0	0	
100		 		0		\bigcirc		 	 				
120		 	1	0		\bigcirc		1	1			1	

○: Made of SUJ2●: Made of SUS

Flange Type												
	Stan	dard			Fitted			Center		En	cased Tv	pe
Round	Square	Square	Cut flange	Round	Square	Cut flange	Round	Square	Cut flange			
				O		Ô						000
LMF LMF-M	LMK LMK-M	LMJK	LMH LMH-M	LMIF	I LMIK	LMIH				SC		SH
				0			O	O	0)			Contraction of the second seco
LMF-L LMF-ML	LMK-L LMK-ML	LMJK-L	LMH-L LMH-ML	LMIF-L	LMIK-L	LMIH-L	LMCF-L	LMCK-L	LMCH-L		SL	SH-L
												0
												\bigcirc
												\bigcirc
$\bigcirc lacksquare$	$\bigcirc lacksquare$		$\bigcirc lacksquare$	0	0	0	\bigcirc	0	0	\bigcirc	0	\bigcirc
$\bigcirc lacksquare$	$\bigcirc lacksquare$	0	$\bigcirc lacksquare$	0	\bigcirc	0	0	\bigcirc	0	0	\bigcirc	0
$\bigcirc lacksquare$	$\bigcirc lacksquare$	0	$\bigcirc lacksquare$	\bigcirc		0	0	0	0	0	\bigcirc	0
\bigcirc	$\bigcirc \bullet$	0	\bigcirc	0		0	0		0	0		0
$\bigcirc \bullet$	\bigcirc		\bigcirc	0		0	0		0	0		0
		0		0		0	0	0	0	0		0
		0		0	\bigcirc	0	0	0	0	0	0	0
		0		0	0	0	0	0	0	0	\bigcirc	
		- 	- 									
\bigcirc	\bigcirc				1					\bigcirc		
0	0		1		1	1			1	0		
0					 							
			1		1							

Types and Features

Standard type

Most standard type.

•	Model LM ······Made of SUJ2
	Metric series used widely in Japan
•	Model LM-GA ······Made of SUJ2
	Metal retainer type
•	Model LM-MG ······Made of SUS
•	Model LME ······Made of SUJ2

Metric series used widely in Europe

Clearance-adjustable type

Type with the same dimensions as the standard type, whose nut has a slit in the direction of the LM shaft.

This allows the linear bushing to be installed in a housing whose inner diameter is adjustable, and enables the clearance between the LM shaft and the housing to be adjusted.

- Model LM-AJ/LM-GA-AJ/LME-AJ ……Made of SUJ2
- Model LM-MG-AJ ······Made of SUS

Open type

Type with the nut partially cut open by one row of balls $(50^{\circ} \text{ to } 80^{\circ})$.

This enables the Linear Bushing to be used even in locations where the LM shaft is supported by a column or fulcrum to avoid deflection. In addition, clearance can easily be adjusted.

- Model LM-OP/LM-GA-OP/LME-OP ······ Made of SUJ2
- Model LM-MGA-OP
 Made of SUS

Long type

Long LM type.

Containing two units of the standard retainer, so the load rating is great.

Standard Type

Clearance-adjustable Type

Open Type

Long Type

Flanged Type (Round)

Type with a round flange at the edge of the nut. This enables the Linear Bushing to be directly mounted onto the housing with bolts, thus achieving easy installation. Model LMF········ Made of SUJ2 Model LMF-M ······· Made of SUS

Flanged Type (Round) - Long

Long LMF type. Containing two units of the standard retainer, so the load rating is great. Model LMF-L ······· Made of SUJ2 Model LMF-ML ······ Made of SUS

Flanged Type (Round)

Flanged Type (Round) - Long

Fitted Flanged Type (Round)

Since the fitted part is short, the linear bushing tends not to protrude into the other side, so space is saved on the side opposite the mounting.

Model LMIF Made of SUJ2

Fitted Flanged Type (Round) - Long

Long LMIF type. Since this contains two units of the standard retainer, the load rating is great. Model LMIF-LMade of SUJ2

Fitted Flanged Type (Round) - Long

Center Flanged Type (Round) - Long

LMIF-L type with the flange placed in the center. Since the work can be mounted around the center of the nut, the load and space are distributed in a balanced manner to both sides of the flange.

It is suitable when you want to divide the stroke into equal halves in both directions.

Model LMCF-L ······Made of SUJ2

Center Flanged Type (Round) - Long

Flanged Type (Square)

LMF type with four parts of the flange cut to a square shape. Since the height is lower than the circular flange type, compact design is allowed. Model LMK Made of SUJ2 Model LMK-M Made of SUS

Flanged Type (Square) - Long

Long LMK type. Since this contains two units of the standard retainer, the load rating is great. Model LMK-L..... Made of SUJ2 Model LMK-ML Made of SUS

Flanged Type (Square)

Flanged Type (Square) - Long

Fitted Flanged Type (Square)

LMIF type with four parts of the flange cut to a square shape.

Since the height is lower than the circular flange type, compact design is allowed. Model LMIK ······· Made of SUJ2

Fitted Flanged Type (Square) - Long

Long LMIK type. Since this contains two units of the standard retainer, the load rating is great. Model LMIK-L Made of SUJ2

Fitted Flanged Type (Square)

Fitted Flanged Type (Square) - Long

Center Flanged Type (Square) - Long

Model LMIK-L type with the flange placed in the center. Since the work can be mounted around the center of the nut, the load and space are distributed in a balanced manner to both sides of the flange.

It is suitable when you want to divide the stroke into equal halves in both directions.

Model LMCK-L ······ Made of SUJ2

Center Flanged Type (Square) - Long

Lightweight Flanged Type (Square) NEW

Type with high-strength plastic used for the flange. The weight is lighter than the metal flange. The weight can be lighter by mounting in the moving part. Model LMJK Made of SUJ2

Lightweight Flanged Type (Square)

Lightweight Flanged Type (Square) - Long NEW

Long LMJK type. Since this contains two units of the standard retainer, the load rating is great. Model LMJK-L Made of SUJ2

Lightweight Flanged Type (Square) - Long

Flanged Type (Cut Flange)

LMF type with the flange cut flat at the top and bottom. Since the height is lower than the square flange type, compact design is allowed.

The rows of balls in the Linear Bushing are arranged so that two rows receive the load from the flat side. Model LMHMade of SUJ2 Model LMH-MMade of SUS

Flanged Type (Cut Flange) - Long

Long LMH type.

Containing two units of the standard retainer, so the load rating is great. Model LMH-L.....Made of SUJ2

Model LMH-ML	······Made	of SUS

Flanged Type (Cut Flange)

Flanged Type (Cut Flange) - Long

Fitted Flanged Type (Ovular)

LMIF type with the flange cut flat at the top and bottom. Since the height is lower than the square flange type, compact design is allowed.

The rows of balls in the Linear Bushing are arranged so that two rows receive the load from the flat side.

Model LMIH ······Made of SUJ2

Fitted Flanged Type (Ovular) - Long

Long LMIH type. Containing two units of the standard retainer, so the load rating is great. Model LMIH-LMade of SUJ2

Fitted Flanged Type (Ovular)

Fitted Flanged Type (Ovular) - Long

Center Flanged Type (Ovular) - Long

LMIH-L type with the flange placed in the center. Since the work can be mounted near the center of the nut, the load and space are distributed in a balanced manner to both sides of the flange. It is suitable when you want to divide the stroke into equal halves in both directions.

Model LMCH-L ······Made of SUJ2

Center Flanged Type (Ovular) - Long

13 11 13

Linear Bushing Model SC

It is a case unit where the standard type of Linear Bushing is incorporated into a small, lightweight aluminum casing. This model can easily be mounted simply by securing it to the table with bolts.

Linear Bushing Model SC

Linear Bushing (Long) Model SL

Long SC type.

This model contains two units of the standard type Linear Bushing in an aluminum casing.

Linear Bushing (Long) Model SL

Linear Bushing Model SH

It is a case unit where the standard type of Linear Bushing is incorporated into a smaller and lighter aluminum casing than model SC.

This model allows even more compact design than model SC.

Additionally, it is structured so that two rows of balls receive the load from the top of the casing.

Linear Bushing (Long) Model SH-L

Long type model SH.

This model contains two units of the standard type Linear Bushing in an aluminum casing.

Linear Bushing Model SH

Linear Bushing (Long) Model SH-L

Standard LM Shafts

THK manufactures high quality, dedicated LM shafts for Linear Bushing model LM series.

Standard LM Shafts

Build-to-order LM Shafts

THK also manufactures specially machined shafts at your request.

Build-to-order LM Shafts

LM Shaft End Support Model SK

An aluminum-made light fulcrum for securing an LM shaft.

It can be fixed without specially machined LM Shafts.

LM Shaft End Support Model SK

고대났 16

Point of Selection

Flowchart for Selecting a Linear Bushing

Steps for Selecting a Linear Bushing

The following flowchart should be used as a guide for selecting a Linear Bushing.

Rated Load and Nominal Life

Load Rating

The rated load of the Linear Bushing varies according to the position of balls in relation to the load direction.

The basic load ratings indicated in the specification tables each indicate the value when one row of balls receives a load.

If the Linear Bushing is mounted so that two rows of balls evenly receive the load in the load direction, the rated load changes as shown in Table1.

Rows of balls	Positions of rows of balls	Load Rating
3 rows		1×C
4 rows		1.41×C
5 rows		1.46×C
6 rows		1.28×C
8 rows		1.25×C

Table1 Rated load of the Linear Bushing

For specific values for "C" above, see the respective specification table.

[Precautions To Be Taken if an Eccentric Load Is Applied]

Since Linear Bushing is not suitable for application of an eccentric load, we recommend using Guide Ball Bushing or Ball Spline.

Calculating the Nominal Life

The nominal life of the Linear Bushing is obtained using the following equation.

$$L = \left(\frac{f_{H} \cdot f_{T} \cdot f_{c}}{f_{W}} \cdot \frac{C}{P_{c}}\right)^{3} \times 50$$

L	: Nominal life	(km)
С	: Basic dynamic load	rating (N)
Pc	: Calculated load	(N)
fн	: Hardness factor	(see Fig.1 on page20)
f⊤	: Temperature factor	(see Fig.2 on page20)
f c	: Contact factor	(see Table5 on page20)
fw	: Load factor	(see Table6 on page20)

• When a Moment Load is Applied to a Single Nut or Two Nuts in Close Contact with Each Other When a moment load is applied to a single nut or two nuts in close contact with each other, calculate the equivalent radial load at the time the moment is applied.

$\mathbf{P}_{u} = \mathbf{K} \cdot \mathbf{M}$

Pu	: Equivalent radial load	(N)	К	: Equivalent factors	(see Table2 to Table4)
	(with a moment applied)		Μ	: Applied moment	(N-mm)

However, " P_u " is assumed to be within the basic static load rating (C_0).

• When a Moment Load and a Radial Load are Simultaneously Applied

When a moment and a radial load are applied simultaneously, calculate the service life based on the sum of the radial load and the equivalent radial load.

Model No	Equivalen	t factor: K					
WOUEI NO.	Single nut	Double nuts					
LM 3	1.566	0.26					
LM 4	1.566	0.21					
LM 5	1.253	0.178					
LM 6	0.553	0.162					
LM 8S	0.708	0.166					
LM 8	0.442	0.128					
LM 10	0.389	0.101					
LM 12	0.389	0.097					
LM 13	0.343	0.093					
LM 16	0.279	0.084					
LM 20	0.257	0.071					
LM 25	0.163	0.054					
LM 30	0.153	0.049					
LM 35	0.143	0.045					
LM 38	0.127	0.042					
LM 40	0.117	0.04					
LM 50	0.096	0.032					
LM 60	0.093	0.028					
LM 80	0.077	0.022					
LM 100	0.065	0.017					
LM 120	0.051	0.015					

Table2 Equivalent Factors of Model LM

Note) Equivalent factors for the following models are the same as that for model LM. Models LMF, LMIF, LMK, LMIK, LMJK, LMH, LMIH and SC Table3 Equivalent Factors of Model LME

Model No	Equivalent factor: K							
MOUELINO.	Single nut	Double nuts						
LME 5	0.669	0.123						
LME 8	0.514	0.116						
LME 12	0.389	0.09						
LME 16	0.343	0.081						
LME 20	0.291	0.063						
LME 25	0.209	0.052						
LME 30	0.167	0.045						
LME 40	0.127	0.039						
LME 50	0.105	0.031						
LME 60	0.093	0.024						
LME 80	0.077	0.018						

Table4 Equivalent Factors of Model LM-L

Madal Na	Equivalent factor: K					
woder No.	Single nut					
LM 3L	0.654					
LM 4L	0.578					
LM 5L	0.446					
LM 6L	0.402					
LM 8L	0.302					
LM 10L	0.236					
LM 12L	0.226					
LM 13L	0.214					
LM 16L	0.192					
LM 20L	0.164					
LM 25L	0.12					
LM 30L	0.106					
LM 35L	0.1					
LM 40L	0.086					
LM 50L	0.068					
LM 60L	0.062					

Note) Equivalent factors for the following models are the same as that for model LM-L. Models LMF-L, LMIF-L, LMCF-L, LMK-L, LMIK-L,

LMCK-L, LMJK-L, LMIF-L, LMICF-L, LMIK-L, LMIK-L

■f_H: Hardness Factor

To maximize the load capacity of the Linear Bushing, the hardness of the raceways needs to be between 58 to 64 HRC.

If the hardness is lower than this range, the basic dynamic load rating and the basic static load rating decrease. Therefore, it is necessary to multiply each rating by the respective hardness factor (f_H).

Normally, $f_{H} = 1.0$ since the Linear Bushing has sufficient hardness.

■f_T:Temperature Factor

If the temperature of the environment surrounding the operating Linear Bushing exceeds 100°C, take into account the adverse effect of the high temperature and multiply the basic load ratings by the temperature factor indicated in Fig.2.

Also note that the Linear Bushing itself must be of high temperature type.

Note) If the environment temperature exceeds 80° C, use a Linear Bushing type equipped with metal retainer plates.

■fc:Contact factor

When multiple nuts are used in close contact with each other, their linear motion is affected by moments and mounting accuracy, making it difficult to achieve uniform load distribution. In such applications, multiply the basic load rating (C) and (C₀) by the corresponding contact factor in Table5.

Note) If uneven load distribution is expected in a large machine, take into account the respective contact factor indicated in Table5.

■f_w: Load Factor

In general, reciprocating machines tend to involve vibrations or impact during operation. It is difficult to accurately determine vibrations generated during high-speed operation and impact during frequent start and stop motion. Therefore, when loads applied on a Linear Bushing cannot be measured, or when speed and impact have a significant influence, divide the basic load rating (C) or (C_0) by the corresponding load factor in Table6.

[Calculating the Service Life Time]

When the nominal life (L) has been obtained, if the stroke length and the number of reciprocations per minute are constant, the service life time is obtained using the following equation.

Lh

ls

n₁

Table5 Contact Factor (fc)

Number of nuts in close contact with each other	Contact factor fc					
2	0.81					
3	0.72					
4	0.66					
5	0.61					
Normal use	1					

Table6 Load Factor (fw)

Vibrations/ impact	Speed(V)	fw
Faint	Very low V≦0.25m/s	1 to 1.2
Weak	Slow 0.25 <v≦1m s<="" td=""><td>1.2 to 1.5</td></v≦1m>	1.2 to 1.5
Medium	Medium 1 <v≦2m s<="" td=""><td>1.5 to 2</td></v≦2m>	1.5 to 2
Strong	High V>2m/s	2 to 3.5

: Number of reciprocations per minute

(h)

(m)

20

(min⁻¹)

: Service life time

: Stroke length

Example of Calculating the Nominal Life (1) - Horizontal Mount -

1.Applied load

Calculate the moment Mn applied to Linear bushing during acceleration, constant velocity, and deceleration by the mass m.

Applied moment during acceleration M₁ $M_1 = mg \times \ell_2 + m\alpha \times (\ell_3 - \ell_1) = 12945$ (N·mm) – (a)

■Applied moment during constant velocity M₂

 $M_2 = mg \times \ell_2 = 11769$ (N·mm) – (b)

■Applied moment during deceleration M₃

 $M_3 = mg \times \ell_2 - m\alpha \times (\ell_3 - \ell_1) = 10593$ (N·mm) - (c)

The equivalent radial load Pn which is thought to be applied with each moment and radial load by Linear Bushing is calculated by the following relational expression.

• Relational expression between the moment Mn and equivalent radial load Pn

 $Pn = \frac{mg}{4} + \frac{Mn}{\ell_4 \times 2}$

Pn : Equivalent radial load (N)

Mn : Load moment (N/mm)

*l*₄ : Dimension between Linear Bushings (mm)

■Equivalent radial load during acceleration P₁

From expression (a)

 $P_1 = \frac{mg}{4} + \frac{M_1}{\ell_4 \times 2} = 139$ (N)

Equivalent radial load during constant velocity P₂

(N)

From expression (b)

 $P_2 = \frac{mg}{4} + \frac{M_2}{\ell_4 \times 2} = 133$ (N)

■Equivalent radial load during deceleration P₃

From expression (c) $P_{3} = \frac{mg}{4} + \frac{M_{3}}{\ell_{4} \times 2} = 127$ (N)

2.Static safety factor

As stated above, it is during acceleration (P_1) that the maximum load is applied to Linear Bushing, so the static safety factor f_s is as follows.

$$f_{s} = \frac{C_{0}}{P_{1}} = 22.5$$

$$f_{s} : \text{Static safety factor} \qquad C_{0} : \text{Basic static load rating} (N)$$

3.Nominal life

Calculate the average load Pm.

$$P_{m} = \sqrt[3]{\frac{1}{S_{t}}} \left(P_{1}^{3} \times 125 + P_{2}^{3} \times 350 + P_{3}^{3} \times 125 \right) = 134 \text{ (N)}$$

Calculate the nominal L.

L=	$\left(\frac{f_{T} \cdot f_{c}}{f_{w}} \cdot \frac{C}{P_{m}}\right)^{3} \times 50 =$	28600 (km)			
L	: Nominal life	(km)	f⊤	: Temperature factor = 1	(from page20)
С	: Basic dynamic load rating	(N)	fc	(from page20)	
P_{m}	: Average load	(N)	fw	: Load factor = 1.5	(from page20)

From these, the static safety factor is 22.5 and the nominal life is 28600km in the above-mentioned use of model LM35.

Example of Calculating the Nominal Life (2) - Vertical Mount -

 $M_1 = mg \times (\ell_1 + \ell_2) + m\alpha \times (\ell_1 + \ell_2) = 36602$ (N · mm) – (a) ■Applied moment during upward constant velocity M₂ $M_2 = mg \times (\ell_1 + \ell_2) = 35306$ (N·mm) – (b) ■Applied moment during upward deceleration M₃ $M_3 = mg \times (\ell_1 + \ell_2) - m\alpha \times (\ell_1 + \ell_2) = 34010$ (N ⋅ mm) – (c) ■Applied moment during downward acceleration M₄ $M_4 = mg \times (\ell_1 + \ell_2) - m\alpha \times (\ell_1 + \ell_2) = 34010$ (N∙mm) – (d) ■Applied moment during downward constant velocity M₅ $M_5 = mg \times (\ell_1 + \ell_2) = 35306$ (N·mm) - (e) ■Applied moment during downward acceleration M₆ $M_6 = mg \times (\ell_1 + \ell_2) + m\alpha \times (\ell_1 + \ell_2) = 36602$ (N∙mm) – (f)

The equivalent radial load Pn which is thought to be applied with each moment is calculated by the following relational expression.

Relational expression between the moment Mn and equivalent radial load Pn

 $Pn = \frac{Mn}{\ell_3} \qquad (N)$

Pn : Equivalent radial load (N)

Mn : Load moment (N/mm)

 ℓ_3 : Dimension between Linear Bushings (mm)

■Equivalent radial load during upward acceleration P₁

From expression (a)

 $P_1 = \frac{M_1}{\ell_3} = 244$ (N)

Equivalent radial load during upward constant velocity P₂

From expression (b) $P_2 = \frac{M_2}{\ell} = 236$

■Equivalent radial load during upward deceleration P₃

(N)

From expression (c)

$$P_3 = \frac{|V|_3}{\ell_3} = 227$$
 (N)

■Equivalent radial load during downward acceleration P₄

From expression (d) $P_4 = \frac{M_4}{\ell_3} = 227$ (N)

■Equivalent radial load during downward constant velocity P₅

From expression (e) $P_5 = \frac{M_5}{\ell_3} = 236$ (N)

■Equivalent radial load during downward deceleration P₆

From expression (f) $P_6 = \frac{M_6}{\ell_3} = 244$ (N)

2.Static safety factor

As stated above, it is during upward acceleration (P_1) and downward deceleration (P_6) that the maximum load is applied to Linear Bushing, so the static safety factor f_s is as follows.

$$f_{s} = \frac{C_{0}}{P_{1}} = \frac{C_{0}}{P_{6}} = 12.8$$

$$f_{s} : \text{Static safety factor} \qquad C_{0} : \text{Basic static load rating} (N)$$

3.Nominal life

Calculate the average load P_{m}

 $P_{m} = \sqrt[3]{\frac{1}{2 \times S_{t}}} \left(\begin{array}{c} P_{1}{}^{3} \times 87.5 + P_{2}{}^{3} \times 525 + P_{3}{}^{3} \times 87.5 + \\ P_{4}{}^{3} \times 87.5 + P_{5}{}^{3} \times 525 + P_{6}{}^{3} \times 87.5 + \end{array} \right) = 236 \text{ (N)}$ $P_{m} : \text{Average load} \quad \text{(N)} \qquad \qquad S_{t} : \text{Stroke} \quad \text{(mm)}$

Calculate the nominal life L.

$$L = \left(\frac{f_{T} \cdot f_{c}}{f_{w}} \cdot \frac{C}{P_{m}}\right)^{3} \times 50 = 5240 \text{ (km)}$$

L : Nominal life (km) C : Basic dynamic load rating (N)

 P_m : Average load (N)

f⊤	: Temperature factor = 1	(from page20)
fc	: Contact factor = 1	(from page20)
fw	: Load factor = 1.5	(from page20)

From these, the static safety factor is 12.8 and the nominal life is 5240km in the above-mentioned use of model LM35.

Accuracy Standards

The accuracy of the Linear Bushing in inscribed bore diameter, outer diameter, width and eccentricity is described in the corresponding specification table. The accuracy of mode LM in inscribed bore diameter and eccentricity is classified into high accuracy grade (no symbol) and precision grade (P). (Accuracy symbol is expressed at the end of the model number.)

For the clearance-adjustable type (-AJ) and open type (-OP), the inscribed bore diameter tolerance, the outer diameter tolerance, and the eccentricity indicate the values before the division of the nut.

Model LM

	Model No.			Main						
	Clearance-			Inscribed bore diameter			Outer	diameter	Length	
	adjustable		Ball		Toler	ance		Tolerance		
Standard type	type	Open type	rows	dr	Precision	High	D	Precision/high	L	Tolerance
LM 3	—	—	4	3	0	0	7	0	10	0
LM 4	—	—	4	4		_0 008	8		12	_0 12
LM 5	—	—	4	5	-0.000	-0.000	10	-0.003	15	-0.12
LM 6	LM 6-AJ	—	4	6			12	0	19	
LM 8S	LM 8S-AJ	—	4	8			15	_0 011	17	
LM 8	LM 8-AJ	—	4	8				-0.011	24	
LM 10	LM 10-AJ	—	4	10			19		29	0
LM 12	LM 12-AJ	—	4	12	_0.000	-0.009	21	0	30	0.2
LM 13	LM 13-AJ	LM 13-OP	4	13			23	-0.013	32	
LM 16	LM 16-AJ	LM 16-OP	5	16			28		37	
LM 20	LM 20-AJ	LM 20-OP	5	20	0	0	32	0	42	
LM 25	LM 25-AJ	LM 25-OP	6	25		_0.010	40	_0.016	59	
LM 30	LM 30-AJ	LM 30-OP	6	30	-0.007	-0.010	45	-0.010	64	
LM 35	LM 35-AJ	LM 35-OP	6	35	0	0	52	0	70	0
LM 40	LM 40-AJ	LM 40-OP	6	40		_0 012	60	-0.019	80	_0.3
LM 50	LM 50-AJ	LM 50-OP	6	50	-0.000	-0.012	80	0	100	
LM 60	LM 60-AJ	LM 60-OP	6	60	0 -0.009	0 0.015	90	-0.022	110	

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C.

If the ambient temperature exceeds 80°C, use the type equipped with a metal retainer (model LM-GA).

If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LM13 UU

- Seal attached on both ends of the nut

For the clearance-adjustable type (-AJ) and open type (-OP), the inscribed bore diameter tolerance, the outer diameter tolerance, and the eccentricity indicate the values before the division of the nut.

Model LM

Model LM-AJ

Model LM-OP

Unit: mm

			din	nension	S			Eccentric	ity (max)	Radial	Radial Basic load rating		
								μr	n	clearance			
										tolerance	С	Co	Mass
	L1	Tolerance	L ₂	D₀	h₀	h₁	θ°	Precision	High	μm	N	Ν	g
			—	—	—	—		4	8	-2	88.2	108	1.6
	—	—	—		—	—		4	8	-3	88.2	127	2.2
	10.2		1.1	9.6	—	—		4	8	-3	167	206	4
	13.5		1.1	11.5	1	—		8	12	-5	206	265	8
	11.5		1.1	14.3	1	—		8	12	-5	176	225	9.3
	17.5		1.1	14.3	1	—		8	12	-5	265	402	13.5
	22	-0.2	1.3	18	1	—		8	12	-5	373	549	25
	23	0.2	1.3	20	1.5	—		8	12	-5	412	598	28
	23		1.3	22	1.5	9	80	8	12	-7	510	775	38
	26.5		1.6	27	1.5	11	60	8	12	-7	775	1180	78
	30.5		1.6	30.5	1.5	11	60	10	15	-9	863	1370	86
	41		1.85	38	2	12	50	10	15	-9	980	1570	210
	44.5		1.85	43	2.5	15	50	10	15	-9	1570	2750	221
	49.5		2.1	49	2.5	17	50	12	20	-13	1670	3140	358
	60.5	_0.3	2.1	57	3	20	50	12	20	-13	2160	4020	557
l	74		2.6	76.5	3	25	50	12	20	-13	3820	7940	1418
	85		3.15	86.5	3	30	50	17	25	-16	4710	10000	1733

Note) When using the Linear Bushing on a single shaft, use two or more units (instead of one unit) on the same shaft to avoid a moment load, and secure a large distance between the units.

If an oil hole is required, this can be indicated by appending "OH" to the end of the model number.

For further information, contact THK.

Model LM-GA (Metal Retainer Type)

			Main							
	Clearance-			Inscri	bed bore	diameter	Outer	diameter	Le	ength
	adjustable		Ball		Toler	ance		Tolerance		
Standard type	type	Open type	rows	dr	Precision	High	D	Precision/high	L	Tolerance
LM 6GA		—	3	6			12	0	19	
LM 8SGA	—	—	3	8			15		17	
LM 8GA		—	3	8		0	15	-0.011	24	
LM 10GA		—	4	10			19		29	0
LM 12GA	LM 12GA-AJ	LM 12GA-OP	4	12		-0.003	21	0	30	0.2
LM 13GA	LM 13GA-AJ	LM 13GA-OP	4	13			23	-0.013	32	
LM 16GA	LM 16GA-AJ	LM 16GA-OP	4	16			28		37	
LM 20GA	LM 20GA-AJ	LM 20GA-OP	5	20	0	0	32	0	42	
LM 25GA	LM 25GA-AJ	LM 25GA-OP	5	25		0 010	40	0.016	59	
LM 30GA	LM 30GA-AJ	LM 30GA-OP	6	30	0.007	-0.010	45	-0.010	64	
LM 35GA	LM 35GA-AJ	LM 35GA-OP	6	35			52	0	70	
LM 38GA	LM 38GA-AJ	LM 38GA-OP	6	38	0	0	57	0 010	76	
LM 40GA	LM 40GA-AJ	LM 40GA-OP	6	40	–0.008	-0.012	60	-0.019	80	
LM 50GA	LM 50GA-AJ	LM 50GA-OP	6	50			80	0	100	
LM 60GA	LM 60GA-AJ	LM 60GA-OP	6	60	0	0	90	0 0 0 0 0 0	110	
LM 80GA	LM 80GA-AJ	LM 80GA-OP	6	80	-0.009	-0.015	120	-0.022	140	0
LM 100GA	LM 100GA-AJ	LM 100GA-OP	6	100	0	0	150	0	175	
LM 120A	LM 120A-AJ	LM 120A-OP	8	120	_0.010	-0.020	180	-0.025	200	

Note) If requiring a type equipped with a seal, indicate it when placing an order. (seal heat resistance: 80°C.)

(Example) LM50GA UU

-Seal attached on both ends of the nut

For the clearance-adjustable type (-AJ) and open type (-OP), the inscribed bore diameter tolerance, the outer diameter tolerance, and the eccentricity indicate the values before the division of the nut.

Model LM-GA

Model LM-GA-AJ

Model LM-GA-OP

Unit: mm

		dim	nension	s			Greasing hole	Eccentricity (max)		Radial clearance	Basic load rating		
								μr	n	tolerance			
											С	Co	Mass
L1	Tolerance	L ₂	Do	h₀	h₁	θ°	d _o	Precision	High	μm	Ν	Ν	g
13.5		1.1	11.5	—	_	_		8	12	-5	206	265	7
11.5		1.1	14.3		_	_		8	12	-5	176	225	10
17.5		1.1	14.3	—	_	_	—	8	12	-5	265	402	14
22	0	1.3	18		_	_	2	8	12	-5	373	549	27
23	-0.2	1.3	20	1.5	7.5	80	2	8	12	-5	412	598	31
23		1.3	22	1.5	9	80	2	8	12	-7	510	775	41
26.5		1.6	27	1.5	11	60	2.3	8	12	-7	775	1180	69
30.5		1.6	30.5	2	11	60	2.3	10	15	-9	863	1370	92
41		1.85	38	2	13	60	3	10	15	-9	980	1570	200
44.5		1.85	43	2.5	15	50	3	10	15	-9	1570	2750	250
49.5	0	2.1	49	2.5	17	50	3	12	20	-13	1670	3140	370
58.5	03	2.1	54.5	3	18	50	3	12	20	-13	2160	4020	490
60.5	-0.5	2.1	57	3	20	50	3	12	20	-13	2160	4020	590
74		2.6	76.5	3	25	50	4	12	20	-13	3820	7940	1500
85		3.15	86.5	3	30	50	4	17	25	-16	4710	10000	1850
105.5	0	4.15	116	3	40	50	4	17	25	-16	7350	16000	4200
125.5		4.15	145	3	50	50	4	20	30	-20	14100	34800	8200
158.6	-0.4	4.15	175	4	85	80	5	20	30	-25	16400	40000	15500

Note) When using the Linear Bushing on a single shaft, use two or more bushings on the same shaft to minimize a moment load, and secure a large distance between the units.

Model LM-GA has oil holes as a standard feature.

If an oil hole is required, this can be indicated by appending "OH" to the end of the model number.

For further information, contact THK.

Model LM-MG (Stainless Steel Type)

	Model No.			Main							
	Clearance-			Inscri	bed bore	diameter	Outer	diameter	Length		
	adjustable		Ball		Toler	ance		Tolerance			
Standard type	type	Open type	rows	dr	Precision	High	D	Precision/high	L	Tolerance	
LM 3M	—	—	4	3	0	0	7	0	10	0	
LM 4M	—	—	4	4	0 005		8		12	_0 12	
LM 5M	—	—	4	5	-0.003	-0.000	10	-0.003	15	-0.12	
* LM 6MG	LM 6MG-AJ	—	4	6			12		19		
* LM 8SMG	LM 8SMG-AJ	—	4	8			15		17		
* LM 8MG	* LM 8MG-AJ	—	4	8		0	15	-0.011	24		
* LM 10MG	* LM 10MG-AJ	—	4	10			19		29	0	
* LM 12MG	* LM 12MG-AJ	—	4	12	_0.000	-0.003	21	0	30	-0.2	
* LM 13MG	* LM 13MG-AJ	* LM13MGA-OP	4	13			23	–0.013	32		
* LM 16MG	* LM 16MG-AJ	* LM16MGA-OP	4	16			28		37		
* LM 20MG	* LM 20MG-AJ	* LM20MGA-OP	5	20	0	0	32		42		
* LM 25MG	* LM 25MG-AJ	* LM25MGA-OP	5	25		_0.010	40	0 016	59		
* LM 30MG	* LM 30MG-AJ	* LM30MGA-OP	6	30	-0.007	-0.010	45	-0.010	64	0	
* LM 35MG	* LM 35MG-AJ	* LM35MGA-OP	6	35	0	0	52	0	70	0.3	
* LM 40MG	* LM 40MG-AJ	* LM40MGA-OP	6	40	-0.008	-0.012	60	-0.019	80		

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C. If the ambient temperature exceeds 80°C, use the type equipped with a metal retainer and indicate "A" at the end of the model number. (For those marked with * in the table, metal retainers are available. Only metal retainer is available for open type.) (Metal retainer types of models LM6MG, 8SMG and 8MG each have 3 rows of balls.)

(Example) LM30MG A

— High temperature symbol

If requiring a type equipped with a seal, indicate it when placing an order. (seal heat resistance: 80°C.)

(Example) LM30MG UU

-Seal attached on both ends of the nut

For the clearance-adjustable type (-AJ) and open type (-OP), the inscribed bore diameter tolerance, the outer diameter tolerance, and the eccentricity indicate the values before the division of the nut.

Model LM-MG

Model LM-MG-AJ

Model LM-MGA-OP

	n	18.	m	m
U		п.		
_				

dimensions								Eccentricity (max)		Radial	Basic load rating		
					-					clearance			
										tolerance	С	C₀	Mass
	L ₁	Tolerance	L ₂	Do	h₀	h₁	θ°	Precision	High	μm	N	Ν	g
		—	_	_		_	_	4	8	-2	88.2	108	1.6
		—	_			_	_	4	8	-3	88.2	127	2.2
	10.2		1.1	9.6	—		_	4	8	-3	167	206	4
	13.5		1.1	11.5	1	—	_	8	12	-5	206	265	6
	11.5		1.1	14.3	1	_		8	12	-5	176	225	9
	17.5		1.1	14.3	1	_	—	8	12	-5	265	402	13
	22		1.3	18	1	—	—	8	12	-5	373	549	23
	23	-0.2	1.3	20	1.5	_		8	12	-5	412	598	27
	23		1.3	22	1.5	9	80	8	12	-7	510	775	35
2	26.5]	1.6	27	1.5	11	80	8	12	-7	775	1180	59
	30.5		1.6	30.5	1.5	11	60	10	15	-9	863	1370	79
	41		1.85	38	2	12	50	10	15	-9	980	1570	170
	44.5	0	1.85	43	2.5	15	50	10	15	-9	1570	2750	220
	49.5	-0.3	2.1	49	2.5	17	50	12	20	-13	1670	3140	330
	60.5		2.1	57	3	20	50	12	20	-13	2160	4020	530

Note) Since the nut and the balls use stainless steel, these models are highly resistant to corrosion and environment. If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

When using the Linear Bushing on a single shaft, use two or more bushings on the same shaft to minimize a moment load, and secure a large distance between the units.

Model LME

		Main							
	Clearance-			Inscribed bore diameter		Outer diameter		L	ength
Standard type	type	Open type	Ball rows	dr	Tolerance	D	Tolerance	L	Tolerance
LME 5	LME 5-AJ	_	4	5	10.000	12	0	22	
LME 8	LME 8-AJ	—	4	8	+0.008	16	-0.008	25	
LME 12	LME 12-AJ	—	4	12		22	0	32	
LME 16	LME 16-AJ	LME 16-OP	5	16	+0.009	26	-0.009	36	-0.2
LME 20	LME 20-AJ	LME 20-OP	5	20	-0.001	32	0	45	
LME 25	LME 25-AJ	LME 25-OP	6	25	+0.011	40		58	
LME 30	LME 30-AJ	LME 30-OP	6	30	-0.001	47	-0.011	68	0
LME 40	LME 40-AJ	LME 40-OP	6	40	+0.012	62	0	80	-0.3
LME 50	LME 50-AJ	LME 50-OP	6	50		75	-0.013	100	
LME 60	LME 60-AJ	LME 60-OP	6	60	-0.002	90	0	125	0
LME 80GA	LME 80GA-AJ	LME 80GA-OP	6	80	+0.016 -0.004	120	-0.015	165	-0.4

Note) Since Linear Bushing models LME60 or smaller models are incorporated with a synthetic resin retainer, do not use them at temperature exceeding 80°C.

If the ambient temperature exceeds 80°C, use the type equipped with a metal retainer and indicate "A" at the end of the model number.

(Example) LME20G A

-High temperature symbol

If requiring a type equipped with a seal, indicate it when placing an order. (seal heat resistance: 80°C.)

(Example) LME16 UU

-Seal attached on both ends of the nut

For the clearance-adjustable type (-AJ) and open type (-OP), the inscribed bore diameter tolerance, the outer diameter tolerance, and the eccentricity indicate the values before the division of the nut.

Model LME

Model LME-AJ

Model LME-OP Unit: mm

Eccentricity Radial dimensions Basic load rating (max) clearance tolerance С C₀ Mass Ν Tolerance D_0 θ° Ν L L_2 h₀ h₁ μm μm g 14.5 1.1 11.5 1 12 -5 206 265 11.4 16.5 15.2 -5 265 402 18.5 1.1 1 12 ____ ____ 0 22.9 1.3 1.5 -7 510 775 37 21 12 -0.2 24.9 1.3 24.9 1.5 10 78 12 -7 775 1180 52 30.3 31.5 1.6 2 10 60 15 -9 863 1370 89 44.1 1.85 37.5 2 12.5 60 15 -9 980 1570 203 52.1 1.85 2 12.5 -9 1570 2750 306 44.5 50 15 0 60.6 -0.3 2.15 59 3 16.8 50 17 -13 2160 4020 673 77.6 2.65 72 3 21 50 -13 3820 7940 1025 17 86.5 3 27.2 4710 10000 101.7 3.15 54 20 -16 1914 0 133.7 -0.4 4.15 116 3 36.3 54 20 -16 7350 16000 4800

Note) If a metal retainer is used, the Linear Bushing has the shape as shown below.

When using the Linear Bushing on a single shaft, use two or more units (instead of one unit) on the same shaft to avoid a moment load, and secure a large distance between the units.

If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

Model LME-GA

Model LM-L

Model LM-L

Model No.		Main							
		Inscribed b	ore diameter	Outer	diameter	Length			
	Ball rows	dr	Tolerance	D	Tolerance	L	Tolerance		
LM 3L	4	3		7		19			
LM 4L	4	4		8	0 0.013	23			
LM 5L	4	5	0 0.010	10		29			
LM 6L	4	6		12		35			
LM 8L	4	8		15		45	0		
LM 10L	4	10		19	0 0.016	55	-0.3		
LM 12L	4	12		21		57			
LM 13L	4	13		23		61			
LM 16L	5	16		28		70			
LM 20L	5	20	0	32	0	80			
LM 25L	6	25	0	40	-0.019	112			
LM 30L	6	30	-0.012	45	-0.019	123			
LM 35L	6	35	0	52	0	135	0		
LM 40L	6	40		60	-0.022	154	_04		
LM 50L	6	50		80		192	0.7		
LM 60L	6	60	0 -0.020	90	0 -0.025	211			

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C.

If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LM13L UU

-----Seal attached on both ends of the nut

	dimer	isions		Eccentricity (max)	Radial clearance	Basic loa	ad rating	
					tolerance			
						С	C₀	Mass
L1	Tolerance	L ₂	Do	μm	μm	Ν	N	g
—		_	_	10	-2	139	216	3
—		—	_	10	-3	139	254	4
20		1.1	9.6	10	-3	263	412	10
27		1.1	11.5	15	-5	324	529	15
35		1.1	14.3	15	-5	431	784	26
44	0	1.3	18	15	-5	588	1100	48
46	-0.3	1.3	20	15	-5	657	1200	56
46		1.3	22	15	-7	814	1570	75
53		1.6	27	15	-7	1230	2350	147
61		1.6	30.5	20	-9	1400	2750	163
82		1.85	38	20	-9	1560	3140	397
89		1.85	43	20	-9	2490	5490	434
99	0	2.1	49	25	-13	2650	6270	696
121	_0 4	2.1	57	25	-13	3430	8040	1087
148	0.4	2.6	76.5	25	-13	6080	15900	2770
170		3.15	86.5	25	-16	7650	20000	3340

Note) A stainless steel type is also available. Contact THK for details.

Model LMF

Model LMF

Model No.			Main dimensions									
		Inscr dia	ibed bore ameter	Outer diameter		L	ength	Flang	e diameter			
	Ball rows	dr	Tolerance	D	Tolerance	L	Tolerance	D1	Tolerance			
LMF 6	4	6		12	0	19		28				
LMF 8S	4	8		15		17]	32				
LMF 8	4	8		15	0.011	24]	32				
LMF 10	4	10		19		29	0	39				
LMF 12	4	12	-0.009	21	0 0.013	30	-0.2	42				
LMF 13	4	13		23		32		43				
LMF 16	5	16		28		37]	48	0.2			
LMF 20	5	20	0	32	0	42		54				
LMF 25	6	25		40		59		62				
LMF 30	6	30	-0.010	45	-0.010	64		74				
LMF 35	6	35	0	52	0	70]	82				
LMF 40	6	40	_0.012	60		80		96				
LMF 50	6	50	-0.012	80		100		116	0			
LMF 60	6	60	0 0.015	90	0 0.022	110		134	-0.3			

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C.

If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMF25 UU

-Seal attached on both ends of the nut

			Flange perpendicularity	Eccentricity (max)	Radial clearance	Basic loa	ad rating	
		Mounting hole			tolerance			
						С	C ₀	Mass
Н	PCD	$d_1 \times d_2 \times h$	μm	μm	μm	Ν	N	g
5	20	3.4×6.5×3.3	12	12	-5	206	265	23
5	24	3.4×6.5×3.3	12	12	-5	176	225	29
5	24	3.4×6.5×3.3	12	12	-5	265	402	33
6	29	4.5×8×4.4	12	12	-5	373	549	59
6	32	4.5×8×4.4	12	12	-5	412	598	68
6	33	4.5×8×4.4	12	12	-7	510	775	80
6	38	4.5×8×4.4	12	12	-7	775	1180	126
8	43	5.5×9.2×5.4	15	15	-9	863	1370	160
8	51	5.5×9.2×5.4	15	15	-9	980	1570	305
10	60	6.6×11×6.5	15	15	-9	1570	2750	422
10	67	6.6×11×6.5	20	20	-13	1670	3140	583
13	78	9×14×8.6	20	20	-13	2160	4020	960
13	98	9×14×8.6	20	20	-13	3820	7940	1920
18	112	11×17.5×10.8	25	25	-13	4710	10000	2720

Model LMF-M (Stainless Steel Type)

Model LMF-M

Model No.			Main dimensions									
		Inscr dia	ibed bore ameter	Outer	diameter	L	ength	Flang	e diameter			
	Ball rows	dr	Tolerance	D Tolerance		L	Tolerance	D1	Tolerance			
LMF 6M	4	6		12	0	19		28				
LMF 8SM	4	8		15		17		32				
LMF 8M	4	8		15] _0.011	24		32				
LMF 10M	4	10		19		29	0	39				
LMF 12M	4	12	-0.009	21	0	30	-0.2	42	0			
LMF 13M	4	13		23	_0.013	32		43	-0.2			
LMF 16M	5	16		28		37		48				
LMF 20M	5	20	0	32		42		54				
LMF 25M	6	25		40		59	0	62]			
LMF 30M	6	30	_0.010	45		64	-0.3	74				

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C. If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMF20M UU

- Seal attached on both ends of the nut

			Flange Eccentricity perpendicularity (max)		Radial clearance	Basic loa	ad rating	
		Mounting hole			tolerance			
						С	Co	Mass
Н	PCD	$d_1 \times d_2 \times h$	μm	μm	μm	Ν	Ν	g
5	20	3.4×6.5×3.3	12	12	-5	206	265	23
5	24	3.4×6.5×3.3	12	12	-5	176	225	29
5	24	3.4×6.5×3.3	12	12	-5	265	402	33
6	29	4.5×8×4.4	12	12	-5	373	549	59
6	32	4.5×8×4.4	12	12	-5	412	598	68
6	33	4.5×8×4.4	12	12	-7	510	775	80
6	38	4.5×8×4.4	12	12	-7	775	1180	126
8	43	5.5×9.2×5.4	15	15	-9	863	1370	160
8	51	5.5×9.2×5.4	15	15	-9	980	1570	305
10	60	6.6×11×6.5	15	15	-9	1570	2750	422

Note) Since the nut and the balls use stainless steel, these models are highly resistant to corrosion and environment. If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

Model LMF-L

Model LMF-L

Model No.			Main dimensions										
	Ball	Inscr dia	ibed bore ameter	Outer diameter		L	ength	Flange diameter					
	rows	dr	Tolerance	D Tolerance		L	Tolerance	D ₁	Tolerance				
LMF 6L	4	6		12	0	35		28					
LMF 8L	4	8		15	-0.013	45		32					
LMF 10L	4	10	0	19		55		39					
LMF 12L	4	12	-0.010	21	0	57		42					
LMF 13L	4	13	-	23	-0.016	61	0.5	43	0				
LMF 16L	5	16	-	28]	70	1	48	-0.2				
LMF 20L	5	20	0	32	0	80]	54					
LMF 25L	6	25		40		112		62					
LMF 30L	6	30	0.012	45		123	1	74					
LMF 35L	6	35	0	52	0	135		82					
LMF 40L	6	40	0 015	60		154		96					
LMF 50L	6	50		80	-0.022	192] 0.4	116	0				
LMF 60L	6	60	0 0.020	90	0 0.025	211		134	-0.3				

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C.

If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMF35L UU

- Seal attached on both ends of the nut

			Flange perpendicularity	Eccentricity (max)	Radial clearance	Basic loa	ad rating	
		Mounting hole			tolerance	С	C₀	Mass
Н	PCD	$d_1 \times d_2 \times h$	μm	μm	μm	Ν	Ν	g
5	20	3.4×6.5×3.3	15	15	-5	324	529	29
5	24	3.4×6.5×3.3	15	15	-5	431	784	45
6	29	4.5×8×4.4	15	15	-5	588	1100	81
6	32	4.5×8×4.4	15	15	-5	657	1200	93
6	33	4.5×8×4.4	15	15	-7	814	1570	115
6	38	4.5×8×4.4	15	15	-7	1230	2350	194
8	43	5.5×9.2×5.4	20	20	-9	1400	2750	250
8	51	5.5×9.2×5.4	20	20	-9	1560	3140	500
10	60	6.6×11×6.5	20	20	-9	2490	5490	646
10	67	6.6×11×6.5	25	25	-13	2650	6270	930
13	78	9×14×8.6	25	25	-13	3430	8040	1488
13	98	9×14×8.6	25	25	-13	6080	15900	3268
18	112	11×17.5×10.8	25	25	-13	7650	20000	4342

Model LMF-ML (Stainless Steel Type)

Model LMF-ML

Model No.			Main dimensions									
	Ball	Inscr dia	Inscribed bore diameter		diameter	Length		Flange	e diameter			
	rows	dr	Tolerance	D	Tolerance	L	Tolerance	D ₁	Tolerance			
LMF 6ML	4	6		12	0	35		28				
LMF 8ML	4	8		15	-0.013	45		32				
LMF 10ML	4	10	0	19		55		39				
LMF 12ML	4	12	-0.010	21	0	57		42	0			
LMF 13ML	4	13		23	-0.016	61	0.5	43				
LMF 16ML	5	16		28		70		48	-0.2			
LMF 20ML	5	20	0	32	0	80		54				
LMF 25ML	6	25	0.012	40		112	0	62				
LMF 30ML	6	30	-0.012	45	-0.019	123	-0.4	74				

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C.

If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMF13ML UU

- Seal attached on both ends of the nut

			Flange Eccentricity perpendicularity (max)		Radial clearance	Basic loa	ad rating	
		Mounting hole			tolerance	С	C ₀	Mass
Н	PCD	$d_1 \times d_2 \times h$	μm	μm	μm	Ν	Ν	g
5	20	3.4×6.5×3.3	15	15	-5	324	529	29
5	24	3.4×6.5×3.3	15	15	-5	431	784	45
6	29	4.5×8×4.4	15	15	-5	588	1100	81
6	32	4.5×8×4.4	15	15	-5	657	1200	93
6	33	4.5×8×4.4	15	15	-7	814	1570	115
6	38	4.5×8×4.4	15	15	-7	1230	2350	194
8	43	5.5×9.2×5.4	20	20	-9	1400	2750	250
8	51	5.5×9.2×5.4	20	20	-9	1560	3140	500
10	60	6.6×11×6.5	20	20	-9	2490	5490	646

Note) Since the nut and the balls use stainless steel, these models are highly resistant to corrosion and environment. If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

Model LMIF

Model LMIF

Model No.			Main dimensions									
	Ball	Inscrit dia	oed bore meter	Outer	diameter	Overa	all length	Flange	diameter			
	10w5	dr	Tolerance	D	Tolerance	L	Tolerance	D ₁	Tolerance			
LMIF 6		6		12	0	19		28				
LMIF 8]	8		15	-0.011	24		32				
LMIF 10	4	10	0	19		29		39				
LMIF 12		12	-0.009	21	0	30		42	0			
LMIF 13]	13		23	-0.013	32	±0.5	43	0.2			
LMIF 16	E	16		28		37		48				
LMIF 20	3	20	0	32	0	42		54				
LMIF 25	6	25	-0.010	40	-0.016	59		62	<u> </u>			

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80° C.

If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMIF16 UU

_____ Seal attached on both ends of the nut

						Flange	Eccentricity (max)	Radial clearance	Basic Rat		
Ler	ngth				Mounting hole	perpendicularity		tolerance	С	Co	Mass
I	Tolerance	D_2	Н	PCD	$d_1 \times d_2 \times h$	μm	μm	μm	Ν	N	g
Б		12	Б	20	3 1 × 6 × 3 3	12		-5	206	265	24
5		15	5	24	5.4~0~5.5	12		-5	265	402	34
		19		29		12	12	-5	373	549	61
6	±0.2	21	6	32	1 5 7 5 1 1	12	12	-5	412	598	69
0	±0.2	23	0	33	4.5^7.5^4.4	12		-7	510	775	81
		28		38		12		-7	775	1180	125
0		32	0	43		15	15	-9	863	1370	166
0		40	0	51	5.5*9*5.4	15	15	-9	980	1570	305

Model LMIF-L

Model LMIF-L

Model No.			Main dimensions									
	Ball	Inscrit dia	Inscribed bore diameter		diameter	Overa	all length	Flange	diameter			
	10w5	dr	Tolerance	D	Tolerance	L	Tolerance	D ₁	Tolerance			
LMIF 6L		6		12	0	35		28				
LMIF 8L]	8		15	-0.013	45		32				
LMIF 10L	4	10	0	19		55		39				
LMIF 12L		12	-0.010	21	0	57		42	0			
LMIF 13L]	13]	23	-0.016	61	±0.5	43	0.2			
LMIF 16L	E	16	1	28		70		48				
LMIF 20L	3	20	0	32	0	80		54				
LMIF 25L	6	25	-0.012	40	-0.019	112		62	<u> </u>			

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80° C.

If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMIF16L UU

_____ Seal attached on both ends of the nut

						Flange	Eccentricity (max)	Radial clearance	Basic Rat	Load	
Ler	ngth				Mounting hole	perpendicularity		tolerance	С	Co	Mass
I	Tolerance	D_2	Н	PCD	$d_1 \times d_2 \times h$	μm	μm	μm	Ν	Ν	g
Б		12	Б	20	3 1 × 6 × 3 3	12		-5	324	529	30
5		15	5	24	5.4~0~5.5	12		-5	431	784	46
		19		29		12	12	-5	588	1100	83
6	+0.2	21	6	32	1 5 4 7 5 4 1	12	12	-5	657	1200	95
0	6 ±0.2		0	33	4.5^7.5^4.4	12		-7	814	1570	117
		28		38		12		-7	1230	2350	196
0		32	o	43		15	15	-9	1400	2750	244
0		40	0	51	5.5*9*5.4	15	15	-9	1560	3140	498

Model LMCF-L

Model No.			Main dimensions										
	Ball	Inscribed bore diameter		Outer	diameter	Overa	III length	Flange	diameter				
	TOWS	dr	Tolerance	D	Tolerance	L	Tolerance	D ₁	Tolerance				
LMCF 6L		6		12	0	35		28					
LMCF 8L		8		15	-0.013	45		32					
LMCF 10L	4	10	0	19		55		39					
LMCF 12L		12	-0.010	21	0	57	102	42	0				
LMCF 13L]	13		23	-0.016	61	±0.3	43	0.2				
LMCF 16L	5	16		28		70		48					
LMCF 20L] 5	20	0	32	0	80]	54]				
LMCF 25L	6	25	-0.012	40	-0.019	112		62]				

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C.

If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMCF16L UU

_____ Seal attached on both ends of the nut

						Flange	Eccentricity (max)	Radial clearance	Basic Rat	Load	
Ler	ngth				Mounting hole	perpendicularity		tolerance	С	C₀	Mass
I	Tolerance	D_2	Н	PCD	$d_1 \times d_2 \times h$	μm	μm	μm	Ν	Ν	g
15		12	Б	20	3 1 × 6 × 3 3	12		-5	324	529	30
20		15	5	24	5.4~0~5.5	12		-5	431	784	46
24.5		19		29		12	12	-5	588	1100	83
25.5	+0.2	21	6	32	1 5 4 7 5 4 1	12	12	-5	657	1200	95
27.5	±0.2	23	0	33	4.5^7.5^4.4	12		-7	814	1570	117
32		28		38		12		-7	1230	2350	196
36 32 8		43	E EXOXE A	15	15	-9	1400	2750	244		
52		40	0	51	0.0^9^0.4	15	10	-9	1560	3140	498

Model LMK

Model LMK

Model No.			Main dimensions									
		Inscr dia	ibed bore ameter	Outer	r diameter	L	ength	Flange	e diameter			
	Ball rows	dr	Tolerance	D	Tolerance	L	Tolerance	D1	Tolerance			
LMK 6	4	6		12	0	19		28				
LMK 8S	4	8		15		17		32				
LMK 8	4	8	0	15	-0.011	24		32				
LMK 10	4	10		19		29	0	39				
LMK 12	4	12	-0.009	21	0	30	0.2	42	0			
LMK 13	4	13		23	0.013	32		43	02			
LMK 16	5	16		28		37		48	-0.2			
LMK 20	5	20	0	32	0	42		54				
LMK 25	6	25	_0.010	40	_0.016	59		62				
LMK 30	6	30	-0.010	45	-0.010	64		74				
LMK 35	6	35	0	52	0	70]	82				
LMK 40	6	40	_0.012	60		80	_0.3	96				
LMK 50	6	50	-0.012	80	0.013	100		116	0			
LMK 60	6	60	0 0.015	90	0 -0.022	110		134	-0.3			

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C.

If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMK13 UU

Т

- Seal attached on both ends of the nut

				Flange perpendicularity	Eccentricity (max)	Radial clearance	Basic loa	ad rating	
			Mounting hole			tolerance			
							С	Co	Mass
K	Н	PCD	$d_1 \times d_2 \times h$	μm	μm	μm	Ν	Ν	g
22	5	20	3.4×6.5×3.3	12	12	-5	206	265	17
25	5	24	3.4×6.5×3.3	12	12	-5	176	225	25
25	5	24	3.4×6.5×3.3	12	12	-5	265	402	26
30	6	29	4.5×8×4.4	12	12	-5	373	549	45
32	6	32	4.5×8×4.4	12	12	-5	412	598	50
34	6	33	4.5×8×4.4	12	12	-7	510	775	67
37	6	38	4.5×8×4.4	12	12	-7	775	1180	105
42	8	43	5.5×9.2×5.4	15	15	-9	863	1370	130
50	8	51	5.5×9.2×5.4	15	15	-9	980	1570	270
58	10	60	6.6×11×6.5	15	15	-9	1570	2750	344
64	10	67	6.6×11×6.5	20	20	-13	1670	3140	487
75	13	78	9×14×8.6	20	20	-13	2160	4020	790
92	13	98	9×14×8.6	20	20	-13	3820	7940	1705
106	18	112	11×17.5×10.8	25	25	-13	4710	10000	2278

Model LMK-M (Stainless Steel Type)

Model LMK-M

Model No.			Main dimensions										
		Inscr dia	ibed bore ameter	Outer	diameter	L	ength	Flange	e diameter				
	Ball rows	dr	Tolerance	D	Tolerance	L	Tolerance	D1	Tolerance				
LMK 6M	4	6		12	0	19		28					
LMK 8SM	4	8		15	0 011	17		32					
LMK 8M	4	8	0	15	-0.011	24		32					
LMK 10M	4	10	0 000	19		29	0	39					
LMK 12M	4	12	-0.009	21	0	30	-0.2	42	0				
LMK 13M	4	13		23	-0.013	32		43	-0.2				
LMK 16M	5	16		28		37		48					
LMK 20M	5	20	0	32	0	42		54					
LMK 25M	6	25	_0.010	40	_0.016	59	0	62					
LMK 30M	6	30	-0.010	45	_0.010	64	-0.3	74					

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C. If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMK25M UU

- Seal attached on both ends of the nut

				Flange perpendicularity	Eccentricity (max)	Radial clearance	Basic loa	ad rating	
			Mounting hole			tolerance			
							С	C ₀	Mass
K	Н	PCD	$d_1 \times d_2 \times h$	μm	μm	μm	N	Ν	g
22	5	20	3.4×6.5×3.3	12	12	-5	206	265	17
25	5	24	3.4×6.5×3.3	12	12	-5	176	225	25
25	5	24	3.4×6.5×3.3	12	12	-5	265	402	26
30	6	29	4.5×8×4.4	12	12	-5	373	549	45
32	6	32	4.5×8×4.4	12	12	-5	412	598	50
34	6	33	4.5×8×4.4	12	12	-7	510	775	67
37	6	38	4.5×8×4.4	12	12	-7	775	1180	105
42	8	43	5.5×9.2×5.4	15	15	-9	863	1370	130
50	8	51	5.5×9.2×5.4	15	15	-9	980	1570	270
58	10	60	6.6×11×6.5	15	15	-9	1570	2750	344

Note) Since the nut and the balls use stainless steel, these models are highly resistant to corrosion and environment. If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

Model LMK-L

Model LMK-L

Model No.			Main dimensions									
	Ball	Inscr dia	ibed bore ameter	Outer	Outer diameter		ength	Flange	e diameter			
	rows	dr	Tolerance	D	Tolerance	L	Tolerance	D ₁	Tolerance			
LMK 6L	4	6		12	0	35		28				
LMK 8L	4	8		15	0.013	45]	32				
LMK 10L	4	10	0	19		55]	39				
LMK 12L	4	12	-0.010	21	0	57		42				
LMK 13L	4	13		23	_0.016	61		43	0			
LMK 16L	5	16		28]	70]	48	-0.2			
LMK 20L	5	20	0	32	0	80]	54				
LMK 25L	6	25		40		112		62				
LMK 30L	6	30	-0.012	45		123	1	74				
LMK 35L	6	35	0	52		135		82				
LMK 40L	6	40	0.015	60		154		96				
LMK 50L	6	50	-0.015	80	0.022	192] _0.4	116	0			
LMK 60L	6	60	0 -0.020	90	0 -0.025	211		134	-0.3			

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C.

If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMK50L UU

----- Seal attached on both ends of the nut

				Flange perpendicularity	Eccentricity (max)	Radial clearance	Basic loa	ad rating	
			Mounting hole			tolerance	С	C ₀	Mass
K	Н	PCD	$d_1 \times d_2 \times h$	μm	μm	μm	N	Ν	g
22	5	20	3.4×6.5×3.3	15	15	-5	324	529	24
25	5	24	3.4×6.5×3.3	15	15	-5	431	784	39
30	6	29	4.5×8×4.4	15	15	-5	588	1100	68
32	6	32	4.5×8×4.4	15	15	-5	657	1200	76
34	6	33	4.5×8×4.4	15	15	-7	814	1570	100
37	6	38	4.5×8×4.4	15	15	-7	1230	2350	176
42	8	43	5.5×9.2×5.4	20	20	-9	1400	2750	210
50	8	51	5.5×9.2×5.4	20	20	-9	1560	3140	466
58	10	60	6.6×11×6.5	20	20	-9	2490	5490	569
64	10	67	6.6×11×6.5	25	25	-13	2650	6270	825
75	13	78	9×14×8.6	25	25	-13	3430	8040	1321
92	13	98	9×14×8.6	25	25	-13	6080	15900	2952
106	18	112	11×17.5×10.8	25	25	-13	7650	20000	3883

Model LMK-ML (Stainless Steel Type)

Model LMK-ML

Model No.			Main dimensions										
	Ball	Inscr dia	ibed bore ameter	Outer	diameter	L	ength	Flange	e diameter				
	rows	dr	Tolerance	D	Tolerance	L	Tolerance	D ₁	Tolerance				
LMK 6ML	4	6		12	0	35		28					
LMK 8ML	4	8		15	-0.013	45		32					
LMK 10ML	4	10	0	19		55		39					
LMK 12ML	4	12	-0.010	21	0	57		42					
LMK 13ML	4	13		23	-0.016	61	0.5	43					
LMK 16ML	5	16		28		70		48	-0.2				
LMK 20ML	5	20	0	32	0	80		54					
LMK 25ML	6	25	0.012	40		112	0	62					
LMK 30ML	6	30	-0.012	45	-0.019	123	-0.4	74					

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80° C.

If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMK8ML UU

----- Seal attached on both ends of the nut

				Flange perpendicularity	Eccentricity (max)	Radial clearance	Basic loa	ad rating	
			Mounting hole			tolerance	С	C₀	Mass
K	Н	PCD	$d_1 \times d_2 \times h$	μm	μm	μm	Ν	Ν	g
22	5	20	3.4×6.5×3.3	15	15	-5	324	529	24
25	5	24	3.4×6.5×3.3	15	15	-5	431	784	39
30	6	29	4.5×8×4.4	15	15	-5	588	1100	68
32	6	32	4.5×8×4.4	15	15	-5	657	1200	76
34	6	33	4.5×8×4.4	15	15	-7	814	1570	100
37	6	38	4.5×8×4.4	15	15	-7	1230	2350	176
42	8	43	5.5×9.2×5.4	20	20	-9	1400	2750	210
50	8	51	5.5×9.2×5.4	20	20	-9	1560	3140	466
58	10	60	6.6×11×6.5	20	20	-9	2490	5490	569

Note) Since the nut and the balls use stainless steel, these models are highly resistant to corrosion and environment. If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

Model LMIK

Model LMIK

Model No.			Main dimensions									
	Ball	Inscribed bore diameter		Outer	diameter	Overa	all length	Flange	diameter			
	10w5	dr	Tolerance	D	Tolerance	L	Tolerance	D ₁	Tolerance			
LMIK 6		6		12	0	19		28				
LMIK 8		8		15	-0.011	24		32]			
LMIK 10	4	10	0	19		29		39]			
LMIK 12]	12	-0.009	21	0	30		42] 0			
LMIK 13]	13	-	23	-0.013	32	±0.3	43	0.2			
LMIK 16	E	16		28		37]	48]			
LMIK 20		20	0	32	0	42]	54]			
LMIK 25	6	25	-0.010	40	-0.016	59		62]			

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C.

If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMIK16 UU

_____ Seal attached on both ends of the nut

								Flange	Eccentricity (max)	Radial clearance	Basic Rat	Load	
	Ler	ngth					Mounting hole	perpendicularity		tolerance	С	C₀	Mass
	I	Tolerance	D2	Н	K	PCD	$d_1 \times d_2 \times h$	μm	μm	μm	Ν	Ν	g
	5		12	5	22	20	2 4 26 2 2 2	12		-5	206	265	18
	5		15	5	25	24	3.4~0~3.3	12		-5	265	402	27
		±0.2	19		30	29		12	12	-5	373	549	46
	6		21	6	32	32	1 5 7 5 1 1	12		-5	412	598	52
	6 8		23	0	34	33	4.5×7.5×4.4	12		-7	510	775	65
			28		37	38		12		-7	775	1180	104
			32	8	42	43	5 5x0x5 1	15	15	-9	863	1370	131
			40	0	50	51	0.0^9^0.4	15	10	-9	980	1570	267

Note) If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

Model LMIK-L

Model LMIK-L

Model No.					Main din	nensions			
	Ball	Inscrit dia	oed bore meter	Outer	diameter	Overa	all length	Flange	diameter
	10w5	dr	Tolerance	D	Tolerance	L	Tolerance	D ₁	Tolerance
LMIK 6L		6		12	0	35		28	
LMIK 8L		8		15	-0.013	45		32	
LMIK 10L	4	10	0	19		55		39	
LMIK 12L		12	-0.010	21	0	57		42	0
LMIK 13L]	13]	23	-0.016	61	±0.5	43	0.2
LMIK 16L	E	16	1	28		70		48	
LMIK 20L	3	20	0	32	0	80]	54]
LMIK 25L	6	25	-0.012	40	-0.019	112		62	<u> </u>

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80° C.

If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMIK16L UU

_____ Seal attached on both ends of the nut

								Flange	Eccentricity (max)	Radial clearance	Basic Rat	Load ing	
	Ler	ngth					Mounting hole	perpendicularity		tolerance	С	Co	Mass
	I	Tolerance	D ₂	Н	Κ	PCD	$d_1 \times d_2 \times h$	μm	μm	μm	Ν	N	g
	Б		12	Б	22	20	3 4 × 6 × 3 3	12		-5	324	529	25
	5	±0.2	15	5	25	24	3.4~0~3.3	12		-5	431	784	39
			10 20 19 30 21 32	29		12	12	-5	588	1100	69		
	6			32	32	4 5 4 7 5 4 4	12	12	-5	657	1200	78	
	0		23	0	34	33	4.5^7.5^4.4	12		-7	814	1570	101
	8		28		37	38	3	12		-7	1230	2350	174
			32	0	42 43	E EXOXE A	15	15	-9	1400	2750	210	
			40	0	50	51	0.0^9^0.4	15	15	-9	1560	3140	461

Model LMCK-L

Model No.					Main din	nensions			
	Ball	Inscrit dia	Inscribed bore diameter dr Tolerance		diameter	Overa	all length	Flange	diameter
	10w5	dr	Tolerance	D	Tolerance	L	Tolerance	D1	Tolerance
LMCK 6L		6		12	0	35		28	
LMCK 8L]	8		15	-0.013	45]	32	
LMCK 10L	4	10	0	19		55		39	
LMCK 12L		12	-0.010	21	0	57		42	0
LMCK 13L]	13		23	-0.016	61	1 ±0.3	43	0.2
LMCK 16L	E	16		28	1	70		48	
LMCK 20L	3	20	0	32	0	80]	54	
LMCK 25L	6	25	-0.012	40	-0.019	112		62	

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C.

If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMCK16L UU

_____ Seal attached on both ends of the nut

							Flange	Eccentricity (max)	Radial clearance	Basic Rat	Load ing	
Ler	ngth					Mounting hole	perpendicularity		tolerance	С	C₀	Mass
I	I Tolerance D_2 H K PCD $d_1 \times d_2 >$		$d_1 \times d_2 \times h$	μm	μm	μm	Ν	Ν	g			
15		12	Б	22	20	2 4 46 42 2	12		-5	324	529	25
20		15	5	25	24	3.4×6×3.3	12		-5	431	784	39
24.5		19		30	29		12	10	-5	588	1100	69
25.5	+0.2	21	6	32	32	2 3 4.5×7.5×4.4	12	12	-5	657	1200	78
27.5	±0.2	23	0	34	33		12		-7	814	1570	101
32	32	28		37	38		12		-7	1230	2350	174
36		32	0	42	43	E EXOXE A	15	15	-9	1400	2750	210
52	40	0	50	51	5.5*9*5.4	15	15	-9	1560	3140	461	

Note) If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

Model LMJK

Model LMJK

Model No.				Main dimensions								
	Ball	Inscr dia	Inscribed bore diameter		r diameter	Over	all length	Flang	e diameter			
	TOWS	dr	Tolerance	D	Tolerance	L	Tolerance	D ₁	Tolerance			
LMJK 8	4	8		15	0 -0.011	24		32				
LMJK 10	4	10		19	0	29] 0	39				
LMJK 12	4	12	_0.009	21		30	0.2	42	0			
LMJK 16	5	16		28	0.013	37		48	0.2			
LMJK 20	5	20	0	32	0	42		54				
LMJK 25	6	25	-0.010	40	-0.016	59	0 -0.3	62				

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80° C.

If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMJK8 UU

_____ Seal attached on both ends of the nut

								Flange	Eccentricity (max)	Radial clearance	Basic Rat	Load	
							Mount- ing hole	perpendicularity		tolerance	С	C₀	Mass
K	В	R	Н	Ι	С	PCD	d ₁	μm	μm	μm	Ν	Ν	g
25	10	R4	6	4		24	3.4			-	265	402	20
30	12					29		12	12	-5	373	549	35
32	13	DE	7	5	C3	32	4.5				412	598	38
37	18	КJ			03	38				7	775	1180	88
42	21					43				-7	863	1370	104
50	26	R6	10	6		51	5.5	15	15	-9	980	1570	234

Model LMJK-L

Model LMJK-L

Model No.				Main dimensions							
	Ball	Inscr dia	Inscribed bore diameter		r diameter	Over	all length	Flang	e diameter		
	Tows	dr	Tolerance	D	Tolerance	L	Tolerance	D ₁	Tolerance		
LMJK 8L	4	8		15	0 -0.013	45		32			
LMJK 10L	4	10		19	0	55] 0	39			
LMJK 12L	4	12	0.010	21		57	0.3	42	0		
LMJK 16L	5	16		28	0.010	70		48	0.2		
LMJK 20L	5	20	0	32	0	80		54			
LMJK 25L	6	25	-0.012	40	-0.019	112	0 -0.4	62			

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80° C.

If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMJK8L UU

____ Seal attached on both ends of the nut

													51110.11111		
								Flange	Eccentricity (max)	Radial clearance	Basic Rat	Load ting			
							Mount- ing hole	perpendicularity		tolerance	С	C	Mass		
K	В	R	Н		С	PCD	d ₁	μm	μm	μm	Ν	Ν	g		
25	10	R4	6	4		24	3.4			-	431	784	32		
30	12					29		15	15	-5	588	1100	58		
32	13	R5	R5	R5	7	5	<u></u>	32	4.5				657	1200	63
37	18				R5			03	38				7	1230	2350
42	21					43				-7	1400	2750	182		
50 26 R6 ¹⁰	10	6		51	5.5	20	20	-9	1560	3140	421				

Unit: mm

Model LMH

Models LMH 6 to 13

Models LMH 16 to 30

Model No.			Main dimensions								
	Ball	Inscrit dia	oed bore meter	Outer	diameter	Le	ength	Flange	diameter		
	rows	dr	Tolerance	D	Tolerance	L	Tolerance	D ₁	Tolerance		
LMH 6	4	6		12	0	19		28			
LMH 8S	4	8		15		17		32			
LMH 8	4	8		15	-0.011	24		32			
LMH 10	4	10	0 000	19		29	0	39			
LMH 12	4	12	-0.009	21	0	30	0.2	42	0		
LMH 13	4	13		23	-0.013	32		43	-0.2		
LMH 16	5	16		28		37]	48			
LMH 20	5	20	0	32	0	42		54			
LMH 25	6	25		40		59	0	62			
LMH 30	6	30	-0.010	45	-0.010	64	-0.3	74			

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C.

If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMH16 UU

- Seal attached on both ends of the nut

					Flange perpendicularity	Eccentricity (max)	Radial clearance	Basic loa	ad rating	
				Mounting hole			tolerance	С	C₀	Mass
K	Н	В	С	$d_1 \times d_2 \times h$	μm	μm	μm	N	Ν	g
18	5	20		3.4×6.5×3.3	12	12	-5	206	265	20
21	5	24	—	3.4×6.5×3.3	12	12	-5	176	225	24
21	5	24	_	3.4×6.5×3.3	12	12	-5	265	402	28
25	6	29	Ι	4.5×8×4.4	12	12	-5	373	549	50
27	6	32	—	4.5×8×4.4	12	12	-5	412	598	56
29	6	33	_	4.5×8×4.4	12	12	-7	510	775	69
34	6	31	22	4.5×8×4.4	12	12	-7	775	1180	111
38	8	36	24	5.5×9.2×5.4	15	15	-9	863	1370	140
46	8	40	32	5.5×9.2×5.4	15	15	-9	980	1570	279
51	10	49	35	6.6×11×6.5	15	15	-9	1570	2750	351

Note) If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

Model LMH-M (Stainless Steel Type)

Models LMH 6M to 13M

Models LMH 16M to 30M

Model No.			Main dimensions							
	Ball	Inscrit dia	oed bore meter	Outer	diameter	Le	ength	Flange	diameter	
	rows	dr	Tolerance	D	Tolerance	L	Tolerance	D ₁	Tolerance	
LMH 6M	4	6		12	0	19		28		
LMH 8SM	4	8		15		17		32		
LMH 8M	4	8		15	-0.011	24		32		
LMH 10M	4	10	0 000	19		29	0	39		
LMH 12M	4	12	-0.009	21	0	30	-0.2	42	0	
LMH 13M	4	13		23	-0.013	32		43	-0.2	
LMH 16M	5	16		28		37		48		
LMH 20M	5	20	0	32	0	42		54		
LMH 25M	6	25		40	0 016	59	0	62]	
LMH 30M	6	30	-0.010	45	-0.010	64	-0.3	74		

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80° C.

If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMH16M UU

__ Seal attached on both ends of the nut

Unit: mm

K H B C $d_1 \times d_2 \times H$ 18 5 20 $3.4 \times 6.5 \times 3$ 21 5 24 $3.4 \times 6.5 \times 3$ 21 5 24 $3.4 \times 6.5 \times 3$ 21 5 24 $3.4 \times 6.5 \times 3$ 25 6 29 $4.5 \times 8 \times 4$. 27 6 32 $4.5 \times 8 \times 4$. 29 6 33 $4.5 \times 8 \times 4$. 34 6 31 22 $4.5 \times 8 \times 4$.					Flange perpendicularity	Eccentricity (max)	Radial clearance	Basic loa	ad rating	
				Mounting hole			tolerance	С	C₀	Mass
K	Н	В	С	$d_1 \times d_2 \times h$	μm	μm	μm	N	Ν	g
18	5	20		3.4×6.5×3.3	12	12	-5	206	265	20
21	5	24	_	3.4×6.5×3.3	12	12	-5	176	225	24
21	5	24	_	3.4×6.5×3.3	12	12	-5	265	402	28
25	6	29	_	4.5×8×4.4	12	12	-5	373	549	50
27	6	32		4.5×8×4.4	12	12	-5	412	598	56
29	6	33		4.5×8×4.4	12	12	-7	510	775	69
34	6	31	22	4.5×8×4.4	12	12	-7	775	1180	111
38	8	36	24	5.5×9.2×5.4	15	15	-9	863	1370	140
46	8	40	32	5.5×9.2×5.4	15	15	-9	980	1570	279
51	10	49	35	6.6×11×6.5	15	15	-9	1570	2750	351

Note) Since the nut and the balls use stainless steel, these models are highly resistant to corrosion and environment. If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

Model LMH-L

Models LMH 6L to 13L

Models LMH 16L to 30L

Model No.			Main dimensions										
	Ball	Inscrit dia	oed bore meter	Outer	diameter	Le	ength	Flange	diameter				
	rows	dr	Tolerance	D	Tolerance	L	Tolerance	D ₁	Tolerance				
LMH 6L	4	6		12	0	35		28					
LMH 8L	4	8		15	-0.013	45]	32					
LMH 10L	4	10	0	19		55		39					
LMH 12L	4	12	-0.010	21	0	57		42					
LMH 13L	4	13		23	-0.016	61		43					
LMH 16L	5	16		28		70	1	48					
LMH 20L	5	20	0	32	0	80]	54					
LMH 25L	6	25	0 012	40	0 -0.019	112	0 -0.4	62					
LMH 30L	6	30	-0.012	45		123		74]				

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C.

If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMH20L UU

----- Seal attached on both ends of the nut

Unit: mm

K H B C $d_1 \times d_2 \times f$ 18 5 20 $3.4 \times 6.5 \times 3$ 21 5 24 $3.4 \times 6.5 \times 3$ 25 6 29 $4.5 \times 8 \times 4.4$ 27 6 32 $4.5 \times 8 \times 4.4$ 29 6 33 $4.5 \times 8 \times 4.4$ 34 6 31 22 $4.5 \times 8 \times 4.4$					Flange perpendicularity	Eccentricity (max)	Radial clearance	Basic loa	ad rating	
				Mounting hole			tolerance	С	C₀	Mass
K	Н	В	С	$d_1 \times d_2 \times h$	μm	μm	μm	N	Ν	g
18	5	20	_	3.4×6.5×3.3	15	15	-5	324	529	27
21	5	24	—	3.4×6.5×3.3	15	15	-5	431	784	41
25	6	29	—	4.5×8×4.4	15	15	-5	588	1100	72
27	6	32	_	4.5×8×4.4	15	15	-5	657	1200	81
29	6	33	_	4.5×8×4.4	15	15	-7	814	1570	105
34	6	31	22	4.5×8×4.4	15	15	-7	1230	2350	182
38	8	36	24	5.5×9.2×5.4	20	20	-9	1400	2750	217
46	8	40	32	5.5×9.2×5.4	20	20	-9	1560	3140	477
51	10	49	35	6.6×11×6.5	20	20	-9	2490	5490	575

Note) If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

Model LMH-ML (Stainless Steel Type)

Models LMH 6ML to 13ML

Models LMH 16ML to 30ML

Model No.			Main dimensions										
	Ball	Inscrit dia	oed bore meter	Outer	diameter	Le	ength	Flange	diameter				
	rows	dr	Tolerance	D	Tolerance	L	Tolerance	D ₁	Tolerance				
LMH 6ML	4	6		12	0	35		28					
LMH 8ML	4	8		15	-0.013	45]	32					
LMH 10ML	4	10	0	19		55		39					
LMH 12ML	4	12	-0.010	21	0	57		42					
LMH 13ML	4	13		23	-0.016	61		43					
LMH 16ML	5	16		28		70		48	0.2				
LMH 20ML	5	20	0	32	0	80		54					
LMH 25ML	6	25	_0.012	40		112	0	62					
LMH 30ML	6	30	-0.012	45	-0.013	123	-0.4	74					

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C.

If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMH20ML UU

_____ Seal attached on both ends of the nut

Unit: mm

K H B C $d_1 \times d_2 \times h$ 18 5 20 $3.4 \times 6.5 \times 3.4$ 21 5 24 $3.4 \times 6.5 \times 3.4$ 25 6 29 $4.5 \times 8 \times 4.4$ 27 6 32 $4.5 \times 8 \times 4.4$ 29 6 33 $4.5 \times 8 \times 4.4$ 34 6 31 22 $4.5 \times 8 \times 4.4$					Flange perpendicularity	Eccentricity (max)	Radial clearance	Basic loa	ad rating	
				Mounting hole			tolerance	С	C₀	Mass
K	Н	В	С	$d_1 \times d_2 \times h$	μm	μm	μm	N	Ν	g
18	5	20		3.4×6.5×3.3	15	15	-5	324	529	27
21	5	24		3.4×6.5×3.3	15	15	-5	431	784	41
25	6	29		4.5×8×4.4	15	15	-5	588	1100	72
27	6	32		4.5×8×4.4	15	15	-5	657	1200	81
29	6	33		4.5×8×4.4	15	15	-7	814	1570	105
34	6	31	22	4.5×8×4.4	15	15	-7	1230	2350	182
38	8	36	24	5.5×9.2×5.4	20	20	-9	1400	2750	217
46	8	40	32	5.5×9.2×5.4	20	20	-9	1560	3140	477
51	10	49	35	6.6×11×6.5	20	20	-9	2490	5490	575

Note) Since the nut and the balls use stainless steel, these models are highly resistant to corrosion and environment. If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

Model LMIH

Model LMIH

Model No.			Main dimensions										
	Ball	Inscrit dia	oed bore meter	Outer	diameter	Overa	all length	Flange	diameter				
	10w5	dr 6	Tolerance	D	Tolerance	L	Tolerance	D ₁	Tolerance				
LMIH 6		6		12	0	19		28					
LMIH 8		8		15	-0.011	24		32					
LMIH 10	4	10	0	19		29		39					
LMIH 12		12	-0.009	21	0	30		42	0				
LMIH 13]	13	-	23	-0.013	32	±0.5	43	0.2				
LMIH 16	5	16	-	28	-	37		48					
LMIH 20	3	20	0	32	0	42		54]				
LMIH 25	6	25	-0.010	40	-0.016	59		62	<u> </u>				

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C.

If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMIH16 UU

_____ Seal attached on both ends of the nut

Models LMIH 6 to 13

Models LMIH 16 to 25

									Flange	Eccentricity (max)	Radial clearance	Basic Rat	Load ting	
	Ler	ngth						Mounting hole	perpendicularity		tolerance	С	C ₀	Mass
	I	Tolerance	D ₂	Н	K	В	C	$d_1 \times d_2 \times h$	μm	μm	μm	Ν	N	g
	5		12	Б	18	20		2 4 2 6 2 2 2	12		-5	206	265	20
	5	5	15	5	21	24		3.4~0~3.3	12		-5	265	402	29
			19 21 0		25	29	—		12	10	-5	373	549	50
	6	+0.2		6	27	32	—	1 5 4 7 5 4 1	12		-5	412	598	57
	0	±0.2	23	0	29	33		4.5^7.5^4.4	12		-7	510	775	70
			28		34	31	22		12		-7	775	1180	111
	0		32	0	38	36	24		15	15	-9	863	1370	140
	0		40	0	46	40	32	0.0^9^0.4	15	CI I	-9	980	1570	276

Note) If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK. Unit: mm

Model LMIH-L

Model LMIH-L

Model No.			Main dimensions										
	Ball	Inscrit dia	oed bore meter	Outer	diameter	Overa	all length	Flange	diameter				
	TOWS	dr	Tolerance	D	Tolerance	L	Tolerance	D ₁	Tolerance				
LMIH 6L		6		12	0	35		28					
LMIH 8L		8		15	-0.013	45		32					
LMIH 10L	4	10	0	19		55		39					
LMIH 12L		12	-0.010	21	0	57		42	0				
LMIH 13L]	13		23	-0.016	61	1 ±0.3	43	0.2				
LMIH 16L	5	16		28		70		48					
LMIH 20L] 5	20	0	32	0	80]	54					
LMIH 25L	6	25	-0.012	40	-0.019	112		62]				

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C.

If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMIH16L UU

Seal attached on both ends of the nut

Models LMIH 6L to 13L

Models LMIH 16L to 25L

												U	nit: mm
								Flange	Eccentricity (max)	Radial clearance	Basic Rat	Load ting	
Ler	ngth						Mounting hole	perpendicularity		tolerance	С	C ₀	Mass
I	Tolerance	D ₂	Н	Κ	В	С	$d_1 \times d_2 \times h$	μm	μm	μm	Ν	N	g
Б		12	Б	18	20	_	2 4 × 6 × 2 2	12		-5	324	529	26
5		15	5	21	24	_	3.4^0^3.3	12		-5	431	784	41
		19		25	29	_		12	10	-5	588	1100	73
6	+0.2	21	6	27	32		1 5 4 7 5 4 1	12	12	-5	657	1200	83
0	±0.2	23	0	29	33		4.5^7.5^4.4	12		-7	814	1570	106
		28		34	31	22		12		-7	1230	2350	180
0		32	0	38	36	24		15	15	-9	1400	2750	219
0		40	0	46	40	32	0.0^9^0.4	15	1D	-9	1560	3140	470

Note) If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

THK 80

Model LMCH-L

Model No.			Main dimensions											
	Ball	Inscrit dia	oed bore meter	Outer	diameter	Overa	all length	Flange	diameter					
	10w5	dr	Tolerance	D	Tolerance	L	Tolerance	D ₁	Tolerance					
LMCH 6L		6		12	0	35		28						
LMCH 8L		8]	15	-0.013	45		32						
LMCH 10L	4	10	0	19		55		39						
LMCH 12L		12	-0.010	21	0	57		42	0					
LMCH 13L		13]	23	-0.016	61] ±0.3	43	0.2					
LMCH 16L	5	16		28		70		48						
LMCH 20L	3	20	0	32	0	80		54]					
LMCH 25L	6	25	-0.012	40	-0.019	112		62	<u> </u>					

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C.

If requiring a type equipped with a seal, indicate it when placing an order.

(Example) LMCH16L UU

- Seal attached on both ends of the nut

Models LMCH 6L to 13L

Models LMCH 16L to 25L

								Flange	Eccentricity (max)	Radial clearance	Basic Rat	Load ting	
Ler	ngth						Mounting hole	perpendicularity		tolerance	С	C ₀	Mass
	Tolerance	D ₂	Н	Κ	В	С	$d_1 \times d_2 \times h$	μm	μm	μm	Ν	N	g
15		12	Б	18	20	_	3 4 × 6 × 3 3	12		-5	324	529	26
20		15	5	21	24		3.4~0~3.3	12		-5	431	784	41
24.5		19		25	29	_		12	12	-5	588	1100	73
25.5	+0.2	21	6	27	32	_	1 5 4 7 5 4 1	12	12	-5	657	1200	83
27.5	±0.2	23	0	29	33		4.5^7.5^4.4	12		-7	814	1570	106
32		28		34	31	22		12		-7	1230	2350	180
36		32	0	38	36	24		15	15	-9	1400	2750	219
52		40	0	46	40	32	0.0^9^0.4	15	CI	-9	1560	3140	470

Note) If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK. Unit: mm

Models SC6 to 30

Models SC6 to 30

	Oute	er dimens	sions					LM c	asing dim	ensiones
Model No.	Height	Width	Length	Mounti	ng hole j	position	Тар	Through bolt	Center height	
	М	W	L	В	B1	С	S×ℓ	model No,S ₂	J ±0.02	₩₁ ±0.02
SC 6UU	18	30	25	20	5	15	M4×8	M3	9	15
SC 8UU	22	34	30	24	5	18	M4×8	M3	11	17
SC 10UU	26	40	35	28	6	21	M5×12	M4	13	20
SC 12UU	29	42	36	30.5	5.75	26	M5×12	M4	15	21
SC 13UU	30	44	39	33	5.5	26	M5×12	M4	15	22
SC 16UU	38.5	50	44	36	7	34	M5×12	M4	19	25
SC 20UU	42	54	50	40	7	40	M6×12	M5	21	27
SC 25UU	51.5	76	67	54	11	50	M8×18	M6	26	38
SC 30UU	59.5	78	72	58	10	58	M8×18	M6	30	39

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C.

A stainless steel Linear Bushing model LM-MG, which is highly corrosion resistant, can also be incorporated at your request.

Example of Model Number for Use in Combination with
Linear Bushing Units

Linear Bushing to be combined	Examle of model No.	
Both end attached with seal	SC 13UU	Standard stock
Without seal	SC 13	Build to order
Made of stainless steel; both end attached with seal	SC 13MUU	Build to order

Unit: mm

					Model No. of Linear Bushing to be combined	el No. of r Bushing Basic load rating combined			
				Inscr dia	ibed bore ameter		С	C₀	Mass
К	W_2	Т	R	dr	Tolerance		Ν	Ν	g
15	28	6	9	6		LM6UU	206	265	34
18	32	6	11	8		LM8UU	265	402	52
22	37	8	13	10	0	LM10UU	373	549	92
25	39	8	14	12	-0.009	LM12UU	412	598	102
26	41	8	15	13		LM13UU	510	775	123
35	46	9	19.5	16		LM16UU	775	1180	189
36	52	11	21	20	0	LM20UU	863	1370	237
41	68	12	25.5	25		LM25UU	980	1570	555
49	72	15	29.5	30	-0.010	LM30UU	1570	2750	685

Note) If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

Models SC35 to 50

Models SC35 to 50

	Oute	r dimen	sions		LM casing dimensiones								
Model No.	Height	Width	Length	Мо	unting h position	nole	Тар	Through bolt	Center height				
	M	W	L	В	B1	С	S×ℓ	model No,S ₂	J ±0.02	₩₁ ±0.02	К		
SC 35UU	68	90	80	70	10	60	M8×18	M6	34	45	54		
SC 40UU	78	102	90	80	11	60	M10×25	M8	40	51	62		
SC 50UU	102	122	110	100	11	80	M10×25	M8	52	61	80		

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C.

A stainless steel Linear Bushing model LM-MG, which is highly corrosion resistant, can also be incorporated at your request. (Model SC50 does not include a stainless type.)

Example of Model Number for Use in Combination with Linear Bushing Units

Linear Bushing to be combined	Examle of model No.	
Both end attached with seal	SC 40UU	Standard stock
Without seal	SC 40	Build to order
Made of stainless steel; both end attached with seal	SC 40MUU	Build to order

Bottom surface of models SC35 to 50 Unit: mm

				Model No. of Linear Bushing to be combined	Basic rat	: load ing	Unit				
						Inscribed bore diameter			С	C₀	Mass
W ₂	W ₃	L1	Т	R	R₁	dr	Tolerance		Ν	Ν	g
85	60	42	18	34	5	35	0	LM35UU	1670	3140	1100
96	80	44	20	38	8	40	0 012	LM40UU	2160	4020	1600
116	100	64	25	50	8	50	-0.012	LM50UU	3820	7940	3350

Note) If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

Model SL

Model SL

	Oute	er dimen:	sions	LM casing dimensiones							
Model No.	Height	Width	Length	Mounti	Mounting hole position		Тар	Through bolt	Center height		
	M	w	L	В	B1	С	S×ℓ	model No,S2	J +0.02	W₁ +0.02	
SL 6UU	18	30	48	20	5	36	M4×8	M3	9	15	
SL 8UU	22	34	58	24	5	42	M4×8	M3	11	17	
SL 10UU	26	40	68	28	6	46	M5×12	M4	13	20	
SL 12UU	29	42	70	30.5	5.75	50	M5×12	M4	15	21	
SL 13UU	30	44	75	33	5.5	50	M5×12	M4	15	22	
SL 16UU	38.5	50	85	36	7	60	M5×12	M4	19	25	
SL 20UU	42	54	96	40	7	70	M6×12	M5	21	27	
SL 25UU	51.5	76	130	54	11	100	M8×18	M6	26	38	
SL 30UU	59.5	78	140	58	10	110	M8×18	M6	30	39	

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C.

A stainless steel Linear Bushing model LM-MG, which is highly corrosion resistant, can also be incorporated at your request.

Example of Model Number for Use in Combination with Linear Bushing Units

Linear Bushing to be combined	Examle of model No.	
Both end attached with seal	SL 13UU	Standard stock
Without seal	SL 13	Build to order
Made of stainless steel; both end attached with seal	SL 13MUU	Build to order

Unit: mm

				Model No. of Linear Bushing to be combined	Basic loa	ad rating	Unit			
					Inscri dia	ibed bore ameter		С	C₀	Mass
К	W_2	Т	R	Ν	dr	Tolerance		Ν	Ν	g
15	28	6	9	7	6		LM6U	324	529	68
18	32	6	11	7	8] [LM8U	431	784	105
22	37	8	13	7	10	0	LM10U	588	1100	185
25	39	8	14	6.5	12	-0.009	LM12U	657	1200	205
26	41	8	15	6.5	13] [LM13U	814	1570	242
35	46	9	19.5	6	16		LM16U	1230	2350	403
36	52	11	21	7	20	0	LM20U	1400	2750	520
41	68	12	25.5	4	25		LM25U	1560	3140	1120
49	72	15	29.5	5	30	-0.010	LM30U	2490	5490	1440

Model SH

Model SH

	Oute	er dimens	sions		LM casing dimensiones							
Model No.	Height	Width	Length	Mounti	ng hole p	position		Тар	Through bolt			
	М	W	L	В	B1	С	$S_1 imes \ell_1$	$S_2 \times \ell$	model No,S₃			
SH 3UU	14	10	13		8	3	M3×6	M3×5.5	M2			
SH 4UU	16	12	15	—	10	3	M3×6	M3×6	M2			
SH 5UU	18	14	17	—	12	3	M3×6	M3×6	M2			
SH 6UU	22	16	24	18	9	5	M4×8	M4×8	M3			
SH 8UU	26	20	27	20	10	5	M4×8	M5×8.5	M3			
SH 10UU	32	26	35	27	15	6	M5×10	M6×9.5	M4			
SH 12UU	34	28	35	27	15	6	M5×10	M6×9.5	M4			
SH 13UU	36	30	36	28	16	6	M5×10	M6×9.5	M4			
SH 16UU	42	36	40	32	18	6	M5×10	M6×10	M4			
SH 20UU	49	42	44	36	22	7	M6×12	M6×12	M5			

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C.

A stainless steel Linear Bushing model LM-MG, which is highly corrosion resistant, can also be incorporated at your request.

Example of Model Number for Use in Combination wit	h
Linear Bushing Units	

Linear Bushing to be combined	Examle of model No.	
Both end attached with seal	SH 13UU	Standard stock
Without seal	SH 13	Build to order
Made of stainless steel; both end attached with seal	SH 13MUU	Build to order

Top surface of models SH6 to SH20

- + - +	S ₂ ×ℓ
	_
Щ . Щ	_

Top surface of models SH3 to SH5

 						Model No. of	Basic loa	ad rating	Unit
Center height				Inscribed bore diameter		Linear Bushing to be combined	С	C₀	Mass
J ±0.02	W₁ ±0.02	d ₂	h	dr	Tolerance		Ν	Ν	g
9	5	4.2	1.5	3	0	LM3UU	88.2	108	4.5
10	6	4.2	1.5	4	0	LM4UU	88.2	127	7
11	7	4.2	1.5	5	-0.000	LM5UU	167	206	11
14	8	6.5	3.3	6		LM6UU	206	265	21
16	10	6.5	3.3	8		LM8UU	265	402	34
19	13	8	4.4	10	0	LM10UU	373	549	67
20	14	8	4.4	12	-0.009	LM12UU	412	598	74
21	15	8	4.4	13		LM13UU	510	775	91
24	18	8	4.4	16		LM16UU	775	1180	157
28	21	9.5	5.4	20	0 0.010	LM20UU	863	1370	206

Note) If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK. Unit: mm

Model SH-L

Model SH-L

	Oute	er dimens	sions		LM casing dimensiones							
Model No.	Height	Width	Length	ength Mounting hole position Tap		Тар	Through bolt					
	М	W	L	В	B1	С	$S_1 \times \ell_1$	$S_2 \times \ell$	model No,S₃			
SH 3LUU	14	10	23	10	18	3	M3×6	M3×5.5	M2			
SH 4LUU	16	12	27	14	22	3	M3×6	M3×6	M2			
SH 5LUU	18	14	32	18	26	3	M3×6	M3×6	M2			
SH 6LUU	22	16	40	20	30	5	M4×8	M4×8	M3			
SH 8LUU	26	20	52	30	42	5	M4×8	M5×8.5	M3			
SH 10LUU	32	26	60	36	50	6	M5×10	M6×9.5	M4			
SH 12LUU	34	28	62	36	50	6	M5×10	M6×9.5	M4			
SH 13LUU	36	30	66	40	54	6	M5×10	M6×9.5	M4			
SH 16LUU	42	36	76	52	66	6	M5×10	M6×10	M4			
SH 20LUU	49	42	86	58	72	7	M6×12	M6×12	M5			

Note) Since this model contains a synthetic resin retainer, do not use it at temperature exceeding 80°C.

A stainless steel Linear Bushing model LM-MG, which is highly corrosion resistant, can also be incorporated at your request.

Example of Model Number for Use in Combination with
Linear Bushing Units

Linear Bushing to be combined	Examle of model No.	
Both end attached with seal	SH 13LUU	Standard stock
Without seal	SH 13L	Build to order
Made of stainless steel; both end attached with seal	SH 13MLUU	Build to order

	Model No. of	Basic loa	ad rating	Unit
ibed bore ameter	Linear Bushing to be combined	С	C₀	Mass
Tolerance		N	Ν	g
0	LM3U	139	216	8.6
	LM4U	139	254	14
	ibed bore ameter Tolerance	Model No. of Linear Bushing to be combinedToleranceLM3U0 0.008LM4U	Model No. of Linear Bushing to be combinedBasic los CToleranceLM3U1390 0 008LM4U139	Model No. of Linear Bushing to be combinedBasic load ratingToleranceCCo0LM3U1392160LM4U139254

J ±0.02	W₁ ±0.02	d ₂	h	dr	Tolerance		Ν	Ν	g
9	5	4.2	1.5	3	0	LM3U	139	216	8.6
10	6	4.2	1.5	4		LM4U	139	254	14
11	7	4.2	1.5	5	-0.000	LM5U	263	412	22
14	8	6.5	3.3	6		LM6U	324	529	37
16	10	6.5	3.3	8		LM8U	431	784	68
19	13	8	4.4	10	0	LM10U	588	1100	125
20	14	8	4.4	12	-0.009	LM12U	657	1200	140
21	15	8	4.4	13		LM13U	814	1570	176
24	18	8	4.4	16		LM16U	1230	2350	309
28	21	9.5	5.4	20	0 0.010	LM20U	1400	2750	413

Note) If an oil hole is required, this can be indicated by appending "OH" to the end of the model number. For further information, contact THK.

Center height

Unit: mm

Standard LM Shafts

THK manufactures high quality, dedicated LM shafts for Linear Bushing model LM series.

- (1) [Major materials]
 - SUJ2 (high-carbon chromium bearing steel)
 - THK5SP (THK standard material)
 - SUS440C equivalent

[Hardness]

58 to 64 HRC

[Hardened layer depth]

0.8 to 2.5mm(varies with shaft diameter)

[Surface roughness]

Ra0.20 to Ra0.40

[Straightness of the LM shaft]

50µm/300mm or less

and the second se	the second s	the second state of the se	
•		L	►

Model	Shaft of	diameter		_	-	_	Ove	erall L	M sha	ft leng	gth: L	mm			_	_	Linear Bushing
No.	d	Tolerance g6μm	100	200	300	400	500	600	700	800	1000	1200	1300	1500	2000	3000	Inscribed bore diameter
SF 3	3	-2 -8	\bigcirc	\bigcirc													3
SF 4	4		\bigcirc	\bigcirc													4
SF 5	5		\bigcirc	\bigcirc	\bigcirc												5
SF 6	6	-12	\bigcirc	\bigcirc	\bigcirc	O											6
SF 8	8	-5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc										8
SF 10	10	–14	\bigcirc							10							
SF 12	12			\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc						12
SF 13	13		\bigcirc						13								
SF 16	16	-17	\bigcirc		\bigcirc			16									
SF 20	20	7		\bigcirc			20										
SF 25	25			\bigcirc			25										
SF 30	30	-20			\bigcirc		30										
SF 35	35						\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc		35
SF 38	38	-9						\bigcirc			\bigcirc	\bigcirc			\bigcirc		38
SF 40	40	-25					\bigcirc	40									
SF 50	50						\bigcirc	\bigcirc		\bigcirc	50						
SF 60	60	-10									0	0			0	0	60
SF 80	80	-29									\bigcirc	\bigcirc			\bigcirc	\bigcirc	80
SF 100	100	-12 -34									0	0			\bigcirc	\bigcirc	100

Note) \bigcirc indicates standard stock; \bigcirc indicates semi-standard stock.

(2) Precision-grade LM shafts with shaft diameter tolerance of g5 or h5 are also manufactured as standard.

(3) Corrosion resistance, martensite stainless steel LM shafts are also available.

[Dimensions of Hollow LM Shafts]

If a hollow LM shaft is required for purposes such as weight reduction, use the desired material from Table1 for the dimensions of hollow LM shafts that THK keeps in stock.

Supported model	LM shaft outer diameter	Inner diameter	Mass (kg/m)			
numbers	d	(<i>ϕ</i> d₄)	Solid shaft	Hollow shaft		
SF 8	8	3	0.4	0.34		
SF 10	10	4	0.62	0.52		
SF 12	12	6	0.89	0.67		
SF 13	13	7	1.05	0.75		
SF 16	16	9	1.59	1.09		
SF 20	20	10	2.47	1.86		
SF 20	20	14	2.47	1.26		
SF 25	25	15	3.86	2.47		
SF 30	30	16	5.56	3.98		
SF 35	35	20	7.57	5.1		
* SF 38	38	22	8.92	5.93		
SF 40	40	22	9.88	6.89		
SF 50	50	25	15.5	11.6		
SF 60	60	32	22.3	16.0		
* SF 80	80	52.5	39.6	22.5		
* SF 100	100	67.5	61.8	33.7		

Table1 Dimensions of Hollow LM Shafts Unit: mm

Models marked with "*" are build-to-order items.

Model number coding

SF25 g6 -500L K

Model number LM shaft outer

diameter tolerance Overall LM shaft length (in mm) Special symbol* no symbol: solid shaft K: standard hollow shaft M: special material F: with surface treatment

*If two or more symbols are given, they are shown in an alphabetical order.

Specially Machined Types

THK also supports special machining processes such as tapping, milling, threading, through hole and end journals, as shown in the Fig.1, at your request.

Dedicated Shafts

The dedicated shaft of the Linear Bushing needs to be manufactured with much consideration for hardness, surface roughness and dimensional accuracy of the shaft since balls roll directly on it. See the following specifications for the material and heat treatment when manufacturing a dedicated shaft, because the surface roughness of the shaft significantly influences the service life.

[Material]

Generally, the following materials are used for surface hardening through induction-hardening.

- SUJ2(ISO B1: high-carbon chromium bearing steel)
- SK3 to 6(ISO C105U: carbon tool steel)
- S55C(ISO C55: carbon steel for machine structural use)

For special applications, martensite stainless steel SUS440C, which is corrosion resistant, may also be used.

[Hardness]

We recommend surface hardness of 58 HRC (\doteqdot 653 HV) or higher. The depth of the hardened layer is determined by the size of the Linear Bushing; we recommend approximately 2 mm for general use.

[Surface Roughness]

To achieve smooth motion, the surface should preferably be finished to Ra 0.40 or less.

LM Shaht End Support Model SK

Unit: mm

						Main	dimen	sions					_	
Model No.	н	W	L	В	S	Mounting bolt model No.	h ±0.02	A ±0.05	b	g	I	Shaft diameter d	Tightening bolt model No.	Mass g
SK 10	32.8	42	14	32	5.5	M5	20	21	5	6	18	10	M4	24
SK 12	37.5	42	14	32	5.5	M5	23	21	5	6	20	12	M4	30
SK 13	37.5	42	14	32	5.5	M5	23	21	5	6	20	13	M4	30
SK 16	44	48	16	38	5.5	M5	27	24	5	8	25	16	M4	40
SK 20	51	60	20	45	6.6	M6	31	30	7.5	10	30	20	M5	70
SK 25	60	70	24	56	6.6	M6	35	35	7	12	38	25	M6	130
SK 30	70	84	28	64	9	M8	42	42	10	12	44	30	M6	180
SK 35	83	98	32	74	11	M10	50	49	12	15	50	35	M8	270
SK 40	96	114	36	90	11	M10	60	57	12	15	60	40	M8	420

Table of Rows of Balls and Masses for Clearance-adjustable Typesand Open Types of the Linear Bushing

	Clearance-	adjustable typ	be	Open type			
Shaft diameter	Model No.	Rows of balls	Mass g	Model No.	Rows of balls	Mass g	
6	LM 6-AJ	4	7.5	—	—	_	
Q	LM 8S-AJ	4	9	—	—	_	
0	LM 8-AJ	4	13	—	_		
10	LM 10-AJ	4	24.5	—	—	_	
12	LM 12-AJ	4	27	—			
13	LM 13-AJ	4	37.5	LM 13-OP	3	30	
16	LM 16-AJ	5(4)	76	LM 16-OP	4(3)	60	
20	LM 20-AJ	5	83	LM 20-OP	4	70	
25	LM 25-AJ	6(5)	200	LM 25-OP	5(4)	180	
30	LM 30-AJ	6	216	LM 30-OP	5	185	
35	LM 35-AJ	6	352	LM 35-OP	5	303	
38	LM 38-AJ	6	475	LM 38-OP	5	400	
40	LM 40-AJ	6	548	LM 40-OP	5	471	
50	LM 50-AJ	6	1401	LM 50-OP	5	1225	
60	LM 60-AJ	6	1715	LM 60-OP	5	1465	
80	LM 80-AJ	6	4320	LM 80-OP	5	3750	
100	LM 100-AJ	6	8540	LM 100-OP	5	7200	
120	LM 120-AJ	8	14900	LM 120-OP	6	11600	

Note) The numbers of ball rows in the table apply to types using a resin retainer. Those of types using a metal retainer are indicated in parentheses.

Point of Design

Assembling the Linear Bushing

[Inner Diameter of the Housing]

Table1 shows recommended housing innerdiameter tolerance for the Linear Bushing. When fitting the Linear Bushing with the housing, loose fit is normally recommended. If the clearance needs to be smaller, provide transition fit.

Туре		Housing		
Model No.	Accuracy	Loose fit	Transition fit	
LM	High accuracy grade (no symbol)	H7	J7	
	Precision Grade(P)	H6	J6	
LME	—	H7	K6, J6	
LM-L				
LMF				
LMF-L				
LMIF				
LMIF-L				
LMCF-L				
LMK				
LMK-L				
LMIK		Н7	17	
LMIK-L	(no symbol)	117	J7	
LMCK-L	(no oymbol)			
LMJK				
LMJK-L				
LMH				
LMH-L				
LMIH				
LMIH-L				
LMCH-L				

[Clearance between the Nut and the LM Shaft]

It is recommended to use normal clearance in ordinary use and small gap if the clearance is to be minimized.

- Note1) If the clearance after installation is to be negative, do not exceed the radial clearance tolerance indicated in the specification table.
- Note2) The shaft tolerance for Linear Bushing models SC, SL SH and SH-L falls under high accuracy grade (no symbol).

Table2 Shaft Outer-diameter Tolerance

Туре		LM Shaft		
Model No.	Accuracy	curacy Normal clearance		
LM	High accuracy grade (no symbol)	f6, g6	h6	
	Precision Grade (P)	f5, g5	h5	
LME	—	h7	k6	
LM-L				
LMF				
LMF-L				
LMIF		f6 . c6	bé	
LMIF-L				
LMCF-L				
LMK				
LMK-L	Lich coourcou			
LMIK	High accuracy			
LMIK-L	(no symbol)	10, 90	110	
LMCK-L	(no symbol)			
LMJK				
LMJK-L				
LMH				
LMH-L				
LMIH				
LMIH-L				
LMCH-L				

Table1 Housing Inner-diameter Tolerance

[Mounting the Nut]

Although the Linear Bushing does not require a large amount of strength for securing it in the axial direction, do not rely only on a press fit to support the nut. For the housing inner-diameter tolerance, see Table1 on **page97**.

• Installing the Standard Type

Fig.1 and Fig.2 show examples of installing the standard type Linear Bushing. When securing the Linear Bushing, use snap rings or stopper plates.

Fig.1 Snap Ring

■Snap Ring for Installation

To secure Linear Bushing model LM, snap rings

indicated in Table3 are available.

- Note1) For models indicated with parentheses, use C-shape concentric snap rings.
- Note2) The Table3 commonly applies to models LM, LM-GA, LM-MG and LM-L.

Fig.2 Stopper Plate

Table3 Types of Snap Rings

	Snap ring			
	For outer surface		For inner surface	
Model No.	Needle snap	C-shape	Needle snap	C-shape
	ring	snap ring	ring	snap ring
LM 3	—	—	AR 7	—
LM 4	_	—	8	_
LM 5	WR 10	10	10	10
LM 6	12	12	12	12
LM 8	_	15	15	15
LM 8S	_	15	15	15
LM 10	19	19	19	19
LM 12	21	21	21	21
LM 13	23	22	23	
LM 16	28	—	28	28
LM 20	32	—	32	32
LM 25	40	40	40	40
LM 30	45	45	45	45
LM 35	52	52	52	52
LM 38	—	56•58	57	
LM 40	_	60	60	60
LM 50	—	80	80	80
LM 60	—	90	90	90
LM 80GA	—	120	120	120
LM 100GA	—	(150)	150	_
LM 120A	_	(180)	180	_

Set Screws Not Allowed

Securing the nut by pressing the outer surface with one set screw as shown in Fig.3 will cause the nut to be deformed.

Incorporating the Nut

When incorporating the standard Linear Bushing into a housing, use a jig and drive in the nut, or use a flatter plate and gently hit the nut, instead of directly hitting the side plate or the seal. (See Fig.4.)

• Installing a Clearance-adjustable Type

To adjust the clearance of a clearance-adjustable type (-AJ), use a housing that allows adjustment of the nut outer diameter so as to facilitate the adjustment of the clearance between the Linear Bushing and the LM shaft. Positioning the slit of the Linear Bushing at an angle of 90° with the housing's slit will provide uniform deformation in the circumferential direction. (See Fig.5.)

Mounting an Open Type

For an open type (-OP), also use a housing that allows adjustment of the nut outer diameter as shown in Fig.6.

Open types are normally used with a light preload. Be sure not to give an excessive preload.

■Precautions on Installing an Open Three-ball-row Type Linear Bushing

When installing an open three-ball-row type Linear Bushing, mount it while taking into account the load distribution as indicated in Fig.7.

• Installing a Flanged Type

With the models of flanged types (circular, square, and cut flange), the nut is integrated with a flange. Therefore, the Linear Bushing can be mounted only via the flange.

Mounted via socket and spigot joint

Mounted via a flange only

Mounted via a flange only

However, model LMJK is installed in the spigot of the nut. Do not install the flange alone.

Mounted via socket and spigot joint

[Installing an LM Case Unit]

• Attaching Model SC (SL)

Models SC and SL can be attached from the top or bottom using bolts (See Fig.8.)

Attaching Model SH (SH-L)

Models SH and SH-L can be attached from the top or bottom and right or left using bolts (See Fig.9.)

Basic installation

[Inserting the LM Shaft]

When inserting the LM shaft into the Linear Bushing, align the center of the shaft with that of the nut and gently insert the shaft straightforward into the nut. If the shaft is slanted while it is inserted, contamination by foreign material, damage to internal components or balls may fall out. (See Fig.10.)

[Attaching Felt Seal Model FLM]

The felt seal can be press-fit into a housing finished to H7, but cannot be used as a stopper to prevent the Linear Bushing from coming off. Be sure to use the snap ring or stopper plate as shown in Fig.11.

Also make sure to impregnate the felt with sufficient lubricant before attaching it.

[Mounting the Shaft End Support]

With LM Shaft End model SK, the LM shaft can be fixed with tightening bolts.

[When Under a Moment Load]

When using the Linear Bushing, make sure the load is evenly distributed on the whole ball raceway. In particular, if a moment load is applied, use two or more Linear Bushing units on the same LM shaft and secure an adequately large distance between the units.

If using the Linear Bushing under a moment load, also calculate the equivalent radial load and identify the correct model number. (See **page19**.)

[Rotational Use Not Allowed]

The Linear Bushing is not suitable for rotational use for a structural reason. (See Fig.12.) Forcibly rotating it may cause an unexpected accident.

Options

Lubrication

The Linear Bushing requires grease or oil as a lubricant for its operation.

[Grease Lubrication]

Before mounting the product onto the LM shaft, apply grease to each row of balls inside the Guide Ball Bushing.

Thereafter apply grease as necessary, in accordance with usage and other conditions noted above, or attach housing as shown in Fig.1, or apply grease directly to the LM shaft.

We recommend using high-quality lithium-soap group grease No. 2.

[Oil Lubrication]

To lubricate, apply lubricant to the LG shaft one drop at a time, as needed, or attach housing as shown in Fig.1, in the same manner as when lubricating with grease.

Commonly used lubricants include turbine oil, machine oil, and spindle oil.

In addition to the procedures described the above, an oil hole or grease nipple can also be used for lubrication. For further information, contact THK.

Material and Surface Treatment

For the Linear Bushing and the LM shaft, highly corrosion-resistant stainless steel types are available for some models.

Although the LM shaft can be surface treated, some types may not be suitable for the treatment. Contact THK for details.

Dust prevention

Entrance of dust or other foreign material into the Linear Bushing will cause abnormal wear or shorten the service life. When entrance of dust or other foreign material is a possibility, it is important to select effective seals and/or a dust-control device that meets the service environment conditions. For the Linear Bushing, a special synthetic rubber seal that is highly resistant to wear and a felt seal (highly dust preventive with low seal resistance) are available as contamination protection accessories.

In addition, THK produces round bellows. Contact us for details.

[Felt Seal Model FLM]

Linear Bushing model LM series include types equipped with a special synthetic rubber seal (LM \cdots UU, U). If desiring to have an additional contamination protection measure, or desiring to lower the seal resistance, use the felt seal model FLM. (See Table1.)

[Dimensions of the Felt Seal]

Table1 Major Dimensions of FLM

					Unit: mm
Model No.	Main dimensions				Supoprted
	d	D	В	Н	model
FLM 6	6	12	2	2	LM 6
FLM 8	8	15	2	2	LM 8
FLM 10	10	19	3	3	LM 10
FLM 12	12	21	3	3	LM 12
FLM 13	13	23	3	3	LM 13
FLM 16	16	28	4	5	LM 16
FLM 20	20	32	4	5	LM 20
FLM 25	25	40	5	6	LM 25
FLM 30	30	45	5	6	LM 30
FLM 35	35	52	5	6	LM 35
FLM 38	38	57	5	6	LM 38
FLM 40	40	60	5	6	LM 40
FLM 50	50	80	10	11	LM 50
FLM 60	60	90	10	11	LM 60
FLM 80	80	120	10	11	LM 80
FLM 100	100	150	10	11	LM 100

Model No.

Model Number Coding

Model number configurations differ depending on the model features. Refer to the corresponding sample model number configuration.

[Linear Bushing]

 Plastic resin cages standard type models LM, LME, LM-L, LMF, LMF-L, LMIF, LMIF-L, LMCF-L, LMK, LMK-L, LMIK, LMIK-L, LMCK-L, LMJK, LMJK-L, LMH, LMH-L, LMIH, LMIH-L, LMCH-L, SC, SL, SH, SH-L

■Notes on Ordering

For high temperature applications, a double-ended nut seal (symbol: UU) can be fitted to linear bushes for metal cages. However, cages without seals are recommended since the seal is only heat resistant to a temperature of 80°C.

[LM Shaft] • Model SF

SF25 g6 -500L K

Model No. LM shaft outer

diameter tolerance

Overall LM shaft length (in mm)

Special symbol* no symbol: solid shaft K: standard hollow shaft M: special material F: with surface treatment

*If two or more symbols are given, they are shown in an alphabetical order. *For information shaft diameters, permissible shaft diameter error and standard stock lengths, see **page93**.

[LM Shaft End Support]

Model SK

SK20

Model No.

[Felt Seal]

Model FLM

FLM 20 Model No.

[Handling]

- (1) Disassembling each part may cause dust to enter the system or degrade mounting accuracy of parts. Do not disassemble the product.
- (2) Take care not to drop or strike the Linear Bushing. Doing so may cause injury or damage. Giving an impact to it could also cause damage to its function even if the product looks intact.
- (3) When handling the product, wear protective gloves, safety shoes, etc., as necessary to ensure safety.

[Precautions on Use]

- (1) Prevent foreign material, such as cutting chips or coolant, from entering the product. Failure to do so may cause damage.
- (2) If the product is used in an environment where cutting chips, coolant, corrosive solvents, water, etc., may enter the product, use bellows, covers, etc., to prevent them from entering the product.
- (3) Do not use the product at temperature of 80°C or higher. Exposure to higher temperatures may cause the resin/rubber parts to deform/be damaged.
- (4) If foreign material such as cutting chips adheres to the product, replenish the lubricant after cleaning the product.
- (5) Micro-strokes tend to obstruct oil film to form on the raceway in contact with the rolling element, and may lead to fretting corrosion. Take consideration using grease offering excellent fretting prevention. It is also recommended that a stroke movement corresponding to the length of the outer cylinder be made on a regular basis to make sure oil film is formed between the raceway and rolling element.
- (6) Do not use undue force when fitting parts (pin, key, etc.) to the product. This may generate permanent deformation on the raceway, leading to loss of functionality.
- (7) Insert the shaft straight through the opening. Inserting the shaft at an angle can introduce foreign matter, damage internal components, or cause balls to fall out.
- (8) Using this product with any balls removed may result in premature damage.
- (9) Please contact THK if any balls fall out; do not use the product if any balls are missing.
- (10) If an attached component is insufficiently rigid or mounted incorrectly, the bearing load will be concentrated at one location and performance will decline significantly. Make sure the housing and base are sufficiently rigid, the anchoring bolts are strong enough, and the component is mounted correctly.

[Lubrication]

- (1) Thoroughly wipe off anti-rust oil and feed lubricant before using the product.
- (2) Do not mix different lubricants. Mixing greases using the same type of thickening agent may still cause adverse interaction between the two greases if they use different additives, etc.
- (3) When using the product in locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, use the grease appropriate for the specification/environment.
- (4) To lubricate the product, apply lubricant directly to the raceway surface and execute a few preliminary strokes to ensure that the interior is fully lubricated.
- (5) The consistency of grease changes according to the temperature. Take note that the slide resistance of the Linear Bushing also changes as the consistency of grease changes.
- (6) After lubrication, the slide resistance of the Linear Bushing may increase due to the agitation resistance of grease. Be sure to perform a break-in to let the grease spread fully, before operating the machine.
- (7) Excess grease may scatter immediately after lubrication, so wipe off scattered grease as necessary.
- (8) The properties of grease deteriorate and its lubrication performance drops over time, so grease must be checked and added properly according to the use frequency of the machine.
- (9) Although the lubrication interval may vary according to use conditions and the service environment, lubrication should be performed approximately every 100 km in travel distance (three to six months). Set the final lubrication interval/amount based on the actual machine.

[Storage]

When storing the Linear Bushing, enclose it in a package designated by THK and store it in a room while avoiding high temperature, low temperature and high humidity.

[Disposal]

Dispose of the product properly as industrial waste.

109 1111 1111

Guide Ball Bushing

Features and Types Guide Ball Bushing

Features of the Guide Ball Bushing

Fig.1 Structure of the Guide Ball Bushing model LG

Structure and Features

Since model LG has 4 rows of circular arc grooves (raceways), it does not need a mechanism to prevent the outer tube from rotating. In addition, its load rating is much larger than Linear Bushing model LM with the same dimensions. Therefore, replacing the Linear Bushing with the Guide Ball Bushing will reduce the size and cost of the guide unit and extend the service life.

[Higher Load Rating than the Linear Bushing]

Since model LG ensures an R contact through the use of circular arc grooves for ball contact, it achieves a load rating more than twice that of point-contact Linear Bushing model LM with the same size.

[A Rotation Stopper is Unnecessary Because of Raceways]

Since model LG has circular arc grooves, it does not need a rotation stopper required for Linear Bushing model LM, and allows the machine design to be compact.

[Interchangeable in Dimensions with Linear Bushing Model LM]

Since the LG nut of model LG has the same outer diameter and length as that of Linear Bushing model, LM, it is possible to replace Linear Bushing model LM with Guide Ball Bushing model LG as assemblies.

[Various Combinations of Nut and Shaft are Available (Any Combination is Allowed)]

As with the Linear Bushing, any combination of the LG nut and the LG shaft of model LG is allowed.

111 1183

Examples of Changing the Linear Bushing to the Guide Ball Bushing

[Advantage of using the Guide Ball Bushing 1: Longer service life]

Since model LG has a rated load more than 2.4 times the Linear Bushing with the same dimensions, replacing the Linear Bushing with model LG will increase the service life by more than 13.8 times.

Model No.	Basic dynamic load rating: C [N]	Load rating ratio	Service life ratio	
LG4S	335	2.9 times	54.9 timos	
LM4	88.2	5.6 times	54.0 times	
LG6S	494	2.4 times	12.9 timos	
LM6	206	2.4 times	13.0 times	
LG8S	796	3.0 times	27.0 timos	
LM8	265	5.0 tilles		

Table1 Comparison of the service life between Guide Ball Bushing mode LG and Linear Bushing model LM

[Advantage of using the Guide Ball Bushing 2: Smaller machine size]

Since the Linear Bushing is not suitable for applications where a load in the rotational direction is applied, it is necessary to use two or more Linear Bushing units in parallel or have a rotation stopper mechanism even under conditions where a torque is not applied. In contrast, the Guide Ball Bushing, which has a structure containing four rows of circular arc grooves, is operable with a single shaft and therefore contributes to downsizing the machine, unless an excessive load is applied.

Achieves a load carrying capacity approximately three times the Linear Bushing in a half space

model LM8 are used

Table2 Comparison of the permissible moment between Guide Ball Bushing mode LG and Linear Bushing model LM

Model No.	Permissible moment: M _A [N-m]	
One unit of LG8S is used	1.46	
Two units of LM8 are used	0.45	

Types of the Guide Ball Bushing

Types and Features

Model LG-S

In this type, the outer diameter and the length of the LG nut are the same as that of Linear Bushing model LM. It can be interchanged with model LM.

Model LG-L

Model LG-L is a long type in which the overall length of the LG nut is longer than that of model LG-S to increase the load carrying capacity.

Point of Selection

Flowchart for Selecting a Guide Ball Bushing

Steps for Selecting a Guide Ball Bushing

The following flowchart should be used as a guide for selecting a Guide Ball Bushing.

Rated Load and Nominal Life

Load Rating

The rated load of the Guide Ball Bushing varies according to the position of balls in relation to the load direction. The basic load ratings indicated in the specification tables each indicate the value when one row of balls receiving a load are directly under the load.

If the Guide Ball Bushing is mounted so that two rows of balls evenly receive the load in the load direction, the rated load changes as shown in Table1.

Table1 Rated load of the Guide Ball Bushing

Rows of balls	Ball position	Load Rating
4 rows		1.41×C

Note: For specific values for "C" above, see the respective specification table.

[Precautions To Be Taken if an Eccentric Load Is Applied]

Model LG achieves a much higher load-carrying capacity in receiving the eccentric load (moment and torque) than Linear Bushing model LM because of 4 rows of raceways. However, under conditions where the eccentric load is larger, the product may result in poor operation or early failure. In such cases, we recommend using Ball Spline model LBS or LT, both of which have larger load-carrying capacities.

Calculating the Nominal Life

The nominal life of the Guide Ball Bushing is obtained using the following equation.

$$\mathbf{L} = \left(\frac{\mathbf{f}_{H} \cdot \mathbf{f}_{T} \cdot \mathbf{f}_{c}}{\mathbf{f}_{W}} \cdot \frac{\mathbf{C}}{\mathbf{P}_{c}}\right)^{3} \times 50$$

		qualition	
L	: Nominal life		(km)
С	: Basic dynamic loa	d rating	(N)
Pc	: Calculated load		(N)
fн	: Hardness factor	(see Fig.1 on pag	je116)
Fτ	: Temperature factor	r	
fc	: Contact factor	(see Table4 on pag	je116)
Fw	: Load factor	(see Table5 on pag	(e116

• When a Moment Load is Applied to a Single Nut or Two Nuts in Close Contact with Each Other

When a moment load is applied to a single nut or two nuts in close contact with each other, calculate the equivalent radial load at the time the moment is applied.

$\mathbf{P}_{u} = \mathbf{K} \cdot \mathbf{M}$

Pu	: Equivalent radial load	(N)	Κ	: Equivalent factors	(see Table2 to Table3)
	(with a moment applied)		Μ	: Applied moment	(N-mm)
	www. "D" is assumed to be within the basis of	static loc	ad ratir	a(C)	

However, "Pu" is assumed to be within the basic static load rating (C_).

When a Moment Load and a Radial Load are Simultaneously Applied

When a moment and a radial load are applied simultaneously, calculate the service life based on the sum of the radial load and the equivalent radial load.

Madal No	Equivalent factor: K			
WOULEI NO.	Single nut	Double blocks		
LG 4S	1.062	0.193		
LG 6S	0.885	0.121		
LG 8S	0.708	0.096		

Table2 Equivalent Factors of Model LG-S

Model No	Equivalent factor: K	
	Single nut	
LG 4L	0.733	
LG 6L	0.465	
LG 8L	0.442	

115 113 115 113

■f_H: Hardness Factor

To maximize the load capacity of the Guide Ball Bushing, the hardness of the raceways needs to be between 58 to 64 HRC.

If the hardness is lower than this range, the basic dynamic load rating and the basic static load rating decrease. Therefore, it is necessary to multiply each rating by the respective hardness factor ($f_{\rm H}$). Normally, $f_{\rm H} = 1.0$ since the Guide Ball Bushing has sufficient hardness.

■f_T:Temperature factor

The temperature of the environment where the Guide Ball Bushing is used must be 80°C or below. Therefore, adopt a temperature factor is $f_T = 1.0$.

The Guide Ball Bushing does not support high temperature. Therefore, if the environment temperature exceeds 80° C, it is necessary to use another product.

fc: Contact Factor

When multiple nuts are used in close contact with each other, their linear motion is affected by moments and mounting accuracy, making it difficult to achieve uniform load distribution. In such applications, multiply the basic load rating (C) and (C_0) by the corresponding contact factor in Table4.

Note) If uneven load distribution is expected in a large machine, take into account the respective contact factor indicated in Table4.

■f_w: Load Factor

In general, reciprocating machines tend to involve vibrations or impact during operation. It is difficult to accurately determine vibrations generated during high-speed operation and impact during frequent start and stop motion. Therefore, when loads applied on a Guide Ball Bushing cannot be measured, or when speed and impact have a significant influence, divide the basic load rating (C) or (C_0) by the corresponding load factor in Table5.

Number of nuts in close contact with each other	Contact factor fc
2	0.81
3	0.72
4	0.66
5	0.61
Normal use	1

Table4 Contact Factor (fc)

Table5 Load Factor (fw)				
Vibrations/impact	Speed(V)	fw		
Faint	Very low V≦0.25m/s	1 to 1.2		
Weak	Slow 0.25 <v≦1m s<="" td=""><td>1.2 to 1.5</td></v≦1m>	1.2 to 1.5		
Medium	Medium 1 <v≦2m s<="" td=""><td>1.5 to 2</td></v≦2m>	1.5 to 2		
Strong	High V>2m/s	2 to 3.5		

[Calculating the Service Life Time]

When the nominal life (L) has been obtained, if the stroke length and the number of reciprocations per minute are constant, the service life time is obtained using the following equation.

L'n	: Service life time	(h)

 ℓ_{s} : Stroke length (m)

 n_1 : Number of reciprocations per minute (min⁻¹)

Accuracy Standards

Table6 Run-out of the outer diameter of the nut relative to the support section of the shaft

		Unit: µm
Overall shaft length (mm)		Run-out(max)*
-	200 or less	72
Above 200	250 or less	133

*: The value if the radial clearance is zero

[Radial Clearance]

Radial Clearance	Unit: μm
Normal clearance	
0 to +10	

Radial Clearance

Measurement of a radial clearance

고감옷 118

Model LG

	Chaft	Nut dimensions					
	Snatt	Outer diameter		Length		Pin hole	
Model No.	Diameter					b	t
	D₀ h7	D	Tolerance	L	Tolerance	+0.05	+0.08
						0	-0.02
LG4S	4	8	0	12	0	1.2	0.8
LG4L	4	8	-0.009	19	-0.12	1.2	0.8
LG6S	6	12		19		1.5	1.2
LG6L	0	12	0	27	0	1.5	1.2
LG8S	0	15	0.011	24	-0.2	2	1.5
LG8L	l o	15	1	30		2	1.5

Note) The basic load ratings each indicate the value when one row of balls receiving a load are directly under the load. The permissible torques each represent a reference value when the radial clearance is maximum ($+10\mu m$). The permissible moments each indicate a reference value when the radial clearance is the maximum ($+10\mu m$) with one row of balls receiving a load being directly under the load.

Note) Model LG guide ball bushing available as LG shaft $(\widehat{)},$ or the LG nut $(\widehat{2})$ separate.

A set consisting of an ③ LG shaft + an LG nut is also available if so desired.

A special radial clearance, designated grease application (standard type is applied only with antirust oil) and surface treatment (THK AP-C treatment, THK AP-CF treatment, THK AP-HC treatment) are also available. Contact THK for details.

Unit: mm

 Basic load rating (radial)		Permissible torque	Permissible moment	Mass
C N	C₀ N	C₀⊤ N-m	M₄ N-m	g
335	473	0.066	0.33	2.5
466	757	0.105	0.71	4.0
494	681	0.241	0.74	10.5
860	1499	0.530	1.71	14.0
796	1065	0.838	1.46	16.5
1203	1916	1.509	2.66	22.0

[LG Shaft]

Material: SUJ2 Hardness: 56 to 64 HRC

LG shaft dimensions

Unit: mm

Model No.	Shaft diameter D₀ h7	Standard length L			Maximum manufac- turing length	Mass (g/m)	
LG4	4	100	150			150	95
LG6	6	100	150	200	—	200	220
LG8	8	100	150	200	250	250	390

Point of Design

Assembling the Guide Ball Bushing

[Inner Diameter of the Housing]

Table1 shows recommended housing inner-diameter tolerance for the Guide Ball Bushing. When fitting the Guide Ball Bushing with the housing, loose fit is normally recommended. If the clearance needs to be smaller, provide transition fit.

Table1 Housing Inner-diameter Tolerance

General conditions	H6
If the accuracy does not need to be very high	H7

[Mounting the Nut]

Mounting model LG using a pin

Although the Guide Ball Bushing does not require a large amount of strength for securing it in the LG shaft direction, do not support the nut only with driving fitting. For the housing inner-diameter tolerance, see Table1.

• Mounting model LG as with the standard type of Linear Bushing

Snap Ring for Installation

To secure the Guide Ball Bushing model LG, snap rings indicated in Table2 are available.

Table2 Types of Shap Rings					
	Snap ring				
Madal No	For inner surface				
wodel No.	Needle snap ring	C-shape snap ring			
LG 4	8	—			
LG 6	12	12			
LG 8	15	15			

Set Screws Not Allowed

Securing the nut by pressing the outer surface with one set screw as shown in Fig.1 will cause the nut to be deformed.

Incorporating the LG Nut

When incorporating the LG nut into a housing, use a jig and drive in the nut, or use a flatter plate and gently hit the nut, instead of directly hitting the side plate or the seal. (See Fig.2)

		Unit: mm
Model No.	dr	Tolerance
LG 4S/LG 4L	3.6	0.1
LG 6S/LG 6L	5.6	-0.1
LG 8S/LG 8L	7.5	-0.3

[Assembling the LG Nut with the LG Shaft of the Guide Ball Bushing]

- (1) When assembling the LG nut with the LG shaft, align the position of the balls inside the LG nut with the position of the groove of the LG shaft, then insert the LG shaft into the LG nut straightforward and gradually. If the LG shaft is tilted when it is inserted, balls may bounce out or damage the circulating part.
- (2) If the LG shaft is stuck in the middle of insertion, do not force it into the nut. Instead, but pull it out first, re-check the ball position and the LG shaft groove position, and then insert it straightforward and gradually.
- (3) After assembling the LG nut with the LG shaft, check that the LG nut or the LG shaft smoothly moves. If the shaft was forced into the nut, function could be lost even if the product looks intact.

[When Under a Moment Load]

When using the Guide Ball Bushing, make sure that the load is evenly distributed on the whole ball raceway. In particular, if a moment load is applied, use two or more LG nuts on the same LG shaft and secure an adequately large distance between the units.

Also if it is used with the moment load, calculate the equivalent radial load and confirm the model. (See **page115**.)

Options

Lubrication

The Guide Ball Bushing requires grease or oil as a lubricant for its operation.

[Grease Lubrication]

Before mounting the product onto the LG shaft, apply grease to each row of balls inside the Guide Ball Bushing.

Thereafter apply grease as necessary, in accordance with usage and other conditions noted above, or attach housing as shown in Fig.1, or apply grease directly to the LG shaft.

We recommend using high-quality lithium-soap group grease No. 2.

[Oil Lubrication]

To lubricate, apply lubricant to the LG shaft one drop at a time, as needed, or attach housing as shown in Fig.1, in the same manner as when lubricating with grease.

Commonly used lubricants include turbine oil, machine oil, and spindle oil.

In addition to the procedures described the above, an oil hole or grease nipple can also be used for lubrication. For further information, contact THK.

Dust prevention

Entrance of dust or other foreign material into the Guide Ball Bushing will cause abnormal wear or shorten the service life. When entrance of dust or other foreign material is a possibility, it is important to select effective seals and/or dust-control device that meets the service environment conditions. In addition, THK produces round bellows. Contact us for details.

Fig.1

Model No.

Model Number Coding

Model number configurations differ depending on the model features. Refer to the corresponding sample model number configuration.

[Guide Ball Bushing]

Estimates and orders should be made for LG shafts alone or LG nuts alone in principle.

A set consisting of an LG shaft and an LH nut is also available if desired by the customer. Contact THK for details.

Models LG-S and LG-L

A special radial clearance, designated grease application (standard product is applied with antirust oil only), and surface treatment (THK AP-C treatment, THK AP-CF treatment, THK AP-HC treatment) are also available. Contact THK for details.

[Handling]

- (1) Disassembling each part may cause dust to enter the system or degrade mounting accuracy of parts. Do not disassemble the product.
- (2) Take care not to drop or strike the Guide Ball Bushing. Doing so may cause injury or damage. Giving an impact to it could also cause damage to its function even if the product looks intact.
- (3) When handling the product, wear protective gloves, safety shoes, etc., as necessary to ensure safety.

[Precautions on Use]

- (1) Prevent foreign material, such as cutting chips or coolant, from entering the product. Failure to do so may cause damage.
- (2) If the product is used in an environment where cutting chips, coolant, corrosive solvents, water, etc., may enter the product, use bellows, covers, etc., to prevent them from entering the product.
- (3) Do not use the product at temperature of 80°C or higher. Exposure to higher temperatures may cause the resin/rubber parts to deform/be damaged.
- (4) If foreign material such as cutting chips adheres to the product, replenish the lubricant after cleaning the product.
- (5) Micro-strokes tend to obstruct oil film to form on the raceway in contact with the rolling element, and may lead to fretting corrosion. Take consideration using grease offering excellent fretting prevention. It is also recommended that a stroke movement corresponding to the length of the outer cylinder be made on a regular basis to make sure oil film is formed between the raceway and rolling element.
- (6) Do not use undue force when fitting parts (pin, key, etc.) to the product. This may generate permanent deformation on the raceway, leading to loss of functionality.
- (7) Insert the shaft straight through the opening. Inserting the shaft at an angle can introduce foreign matter, damage internal components, or cause balls to fall out.
- (8) Using this product with any balls removed may result in premature damage.
- (9) Please contact THK if any balls fall out; do not use the product if any balls are missing.
- (10) If an attached component is insufficiently rigid or mounted incorrectly, the bearing load will be concentrated at one location and performance will decline significantly. Make sure the housing and base are sufficiently rigid, the anchoring bolts are strong enough, and the component is mounted correctly.

[Lubrication]

- (1) Thoroughly wipe off anti-rust oil and feed lubricant before using the product.
- (2) Do not mix different lubricants. Mixing greases using the same type of thickening agent may still cause adverse interaction between the two greases if they use different additives, etc.
- (3) When using the product in locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, use the grease appropriate for the specification/ environment.
- (4) To lubricate the product, apply lubricant directly to the raceway surface and execute a few preliminary strokes to ensure that the interior is fully lubricated.
- (5) The consistency of grease changes according to the temperature. Take note that the slide resistance of the Guide Ball Bushing also changes as the consistency of grease changes.

- (6) After lubrication, the slide resistance of the Guide Ball Bushing may increase due to the agitation resistance of grease. Be sure to perform a break-in to let the grease spread fully, before operating the machine.
- (7) Excess grease may scatter immediately after lubrication, so wipe off scattered grease as necessary.
- (8) The properties of grease deteriorate and its lubrication performance drops over time, so grease must be checked and added properly according to the use frequency of the machine.
- (9) The greasing interval varies depending on the use condition and service environment. Set the final lubrication interval/amount based on the actual machine.

[Storage]

When storing the Guide Ball Bushing, enclose it in a package designated by THK and store it in a room while avoiding high temperature, low temperature and high humidity.

[Disposal]

Dispose of the product properly as industrial waste.

127 111 1127

LM Stroke / Miniature Stroke / Die-setting Ball Cage

ST

LM Stroke Models ST, ST-B and STI

Fig.1 Structure of LM Stroke Model ST

Structure and Features

Model ST has a ball cage and balls both incorporated into a precision-ground cylindrical nut as shown in Fig.1. The balls are arranged in zigzags so as to evenly receive a load. The ball cage is a drilled cage made of a light alloy with high rigidity, and is capable of high-speed motion. A thrust ring and a snap ring are installed on both sides of the inner surface of the nut to prevent the ball cage from overshooting.

This structure allows rotational motion, reciprocal motion and complex motion with a small friction coefficient. Model ST has a stroke length up to twice the range within which the ball cage can travel. Since high accuracy can be obtained at a low price, this model is used in a broad array of applications such as press die setting, ink roll unit of printing machine, workpiece chuck unit of punching press, press feeder, work head of electric discharge machine, wound roll corrector, spinning and weaving machine, distortion measuring equipment, spindle of optical measuring instrument, and photocopiers.

[Minimal Friction Coefficient]

The balls and the ball raceway are in point contact, which causes the smallest rolling loss, and the balls are individually retained in the ball cage. This allows the LM stroke to perform rolling motion at a minimal friction coefficient (μ =0.0006 to 0.0012).

[Compact Design]

Since it consists only of a thin nut and balls, the outer diameter of the bearing is minimized and a light, space-saving, compact design is achieved.

[High Accuracy at a Low Price]

A highly accurate slide unit can be produced at a low price.

Types and Features

Light Load Type Model ST

Model ST is a light load type that allows for a long stroke. Shaft diameter: ϕ 6 to ϕ 100 In addition, a type attached with seal is available. Model ST-UU

Medium Load Type Model ST-B

It has the same dimensions as model ST, but has a shorter stroke and achieves a rated load twice that of ST. Shaft diameter: ϕ 8 to ϕ 100 In addition, a type attached with seal is available. Model ST-UUB

If the LM shaft cannot be hard quenched, STI allows an inner ring to be incorporated. The inner ring is available build-to-order.

Model STI

Rated Load and Nominal Life

[Load Rating]

The basic load ratings for model ST are indicated in the respective specification tables.

[Nominal Life]

The nominal life of model ST is obtained using the following equation.

$$\mathbf{L} = \left(\frac{\mathbf{f}_{\mathsf{H}} \cdot \mathbf{f}_{\mathsf{T}} \cdot \mathbf{f}_{\mathsf{c}}}{\mathbf{f}_{\mathsf{w}}} \cdot \frac{\mathbf{C}}{\mathbf{P}_{\mathsf{c}}}\right)^{3}$$

- L : Nominal life (rotating 10⁶ times) (The total number of revolutions that 90% of a group of identical LM strokes independently operating under the same conditions can achieve without showing flaking)
- C: Basic dynamic load rating(N) f_T : Temperature factor(see Fig.3 on page132) P_c : Calculated radial load(N) f_c : Contact factor(see Table3 on page132)

fw : Load factor

f_H : Hardness factor (see Fig.2 on **page132**)

• When a Moment Load is Applied to a Single Nut

When a moment load is applied to a single nut, calculate the equivalent radial load from the moment.

$\mathbf{P}_{u} = \mathbf{K} \cdot \mathbf{M}$

P_{u}	: Equivalent radial load	(N)	Κ	: Equivalent factor	(see Table1 to Table2)
	(with moment load)		Μ	: Applied moment	(N-mm)
	accurate to be within the Desig Static Le	ad Dating (\sim		

 $\mathsf{P}_{^{\tt u}}$ is assumed to be within the Basic Static Load Rating (C_).

• When a Moment Load and a Radial Load are Simultaneously Applied

When a moment and a radial load are applied simultaneously, calculated the service life based on the sum of the radial load and the equivalent radial load.

	-
Madal No	Equivalent factor: K
MOUELINO.	Single nut
ST 6	0.726
ST 8	0.721
ST 10	0.489
ST 12	0.421
ST 16	0.408
ST 20	0.419
ST 25	0.42
ST 30	0.28
ST 35	0.285
ST 40	0.252
ST 45	0.251
ST 50	0.207
ST 55	0.206
ST 60	0.206
ST 70	0.206
ST 80	0.186
ST 90	0.185
ST 100	0.185

Table1 Equivalent Factor of Model ST

Table2 Equivalent Factor of Model ST-B				
Model No	Equivalent factor: K			
	Single nut			
ST 8B	0.444			
ST 10B	0.301			
ST 12B	0.259			
ST 16B	0.251			
ST 20B	0.258			
ST 25B	0.257			
ST 30B	0.171			
ST 35B	0.175			
ST 40B	0.154			
ST 45B	0.154			
ST 50B	0.127			
ST 55B	0.127			
ST 60B	0.127			
ST 70B	0.127			
ST 80B	0.114			
ST 90B	0.114			
ST 100B	0.114			

Table2 Equivalent Factor of Model ST-B

(see Table4 on page132)

■f_H: Hardness Factor

To maximize the load capacity of model ST, the hardness of the raceways needs to be between 58 to 64 HRC.

If the hardness is lower than this range, the basic dynamic load rating and the basic static load rating decrease. Therefore, it is necessary to multiply each rating by the respective hardness factor ($f_{\rm H}$). Normally, $f_{\rm H}$ =1.0 since model ST has sufficient hardness.

■f_T: Temperature Factor

If the temperature of the environment surrounding the operating model ST exceeds 100° C, take into account the adverse effect of the high temperature and multiply the basic load ratings by the temperature factor indicated in Fig.3.

Note) If the environment temperature exceeds 80 $^\circ C$, contact THK.

fc: Contact Factor

When multiple nuts of model ST are used in close contact with each other, their linear motion is affected by moments and mounting accuracy, making it difficult to achieve uniform load distribution. In such applications, multiply the basic load rating (C) and (C_0) by the corresponding contact factor in Table3.

Note) If uneven load distribution is expected in a large machine, take into account the respective contact factor indicated in table 3.

Ifw: Load Factor

In general, reciprocating machines tend to involve vibrations or impact during operation. It is extremely difficult to accurately determine vibrations generated during high-speed operation and impact during frequent start and stop. Therefore, when speed and vibrations have a significant influence, divide the basic dynamic load rating (C or C_0), by the corresponding load factor in Table4 of empirically obtained data.

Fig.3 Temperature Factor (f_T)

Table3 Contact Factor (fc)

Number of nuts in close contact with each other	Contact factor f _c
2	0.81
3	0.72
4	0.66
5	0.61
Normal use	1

Table4 Load Factor (f_w)

Vibrations/ impact	Speed (V)	fw
Faint	Very low V≦0.25m/s	1 to 1.2
Weak	Slow 0.25 <v≦1m s<="" td=""><td>1.2 to 1.5</td></v≦1m>	1.2 to 1.5
Medium	Medium 1 <v≦2m s<="" td=""><td>1.5 to 2</td></v≦2m>	1.5 to 2
Strong	High V>2m/s	2 to 3.5

[Calculating the Service Life Time]

When the nominal life (L) has been obtained, if the number of revolutions per minute and the number of reciprocations per minute are constant, the service life time is obtained using the following equation.

• For Rotating Motion or Complex Motion

The permissible speed limit of model ST is obtained using the following equation.

$DN \ge dm \cdot n + 10 \times \ell_s \cdot n_1$

For the DN value above, the following value applies as a standard value.For oil lubricationDN=600000For grease lubricationDN=300000However, the following points must be taken into account. $n \leq 5000$

*l*s•n₁ ≦50000

Accuracy Standards

The tolerance value in inscribed bore diameter (dr), nut outer diameter (D) and nut length (L) is indicated in the corresponding specification table. The end of the nut may be deformed due to tension of the snap ring. Therefore, when measuring the nut outer diameter, it is necessary to calculate the measurement range using the following equation, and obtain the average diameter value within the range. The tolerance value in the nut outer diameter is equal to the calculated average value of the maximum diameter and the minimum diameter obtained through two-point measurement of the outer diameter.

W : Length out of the measurement range (mm)

Fig.4 Measurement Range of the Nut

L : Nut length

(mm)

Fit

In theory, the ball cage of model ST moves in the same direction as the ST shaft by 1/2 of the shaft (or nut). However, to minimize the travel distance error caused by uneven load distribution or vibrations, it is necessary to reduce the clearance. If high accuracy is required or if the LM Stroke is used on a vertical shaft, we recommend setting the radial clearance between 0 and 10 μ m.

Item	Normal conditions	Vertical shaft or high accuracy
ST shaft	k5, m5	n5, p5
Housing	H6, H7	J6, J7

ST Shaft

With the ST shaft, used in model ST, balls roll directly on the shaft surface. Therefore, it is necessary to pay much attention to the hardness, surface roughness and dimensional accuracy when manufacturing it.

Since the hardness of the ST shaft has especially large impact on the service life, use much care in selecting a material and heat treatment method.

THK also manufactures high-quality ST shafts. Contact us for details.

[Material]

Generally, the following materials are used as suitable for surface hardening through induction-hardening.

- SUJ2 (ISO B1: high-carbon chromium bearing steel)
- SK3 to 6 (ISO C105U: carbon tool steel)
- S55C (ISO C55: carbon steel for machine structural use)

[Hardness]

We recommend surface hardness of 58HRC(\Rightarrow 653HV) or higher. The depth of the hardened layer is determined by the shaft diameter; we recommend approximately 2 mm for general use. The ST shaft can have a hardened inner ring attached on the shaft raceway.

[Surface roughness]

To achieve smooth motion, the surface is normally finished to Ra 0.40 or less. If higher wear resistance is required, finish the surface to Ra 0.20 or less.

Installation of the ST Shaft

To install the ST shaft, drive it in to the designated depth. If the clearance is negative, a large driving force is required. However, do not forcibly hammer the shaft. Instead, apply a lubricant on the ST shaft first, and then gradually drive it in with a slight back action.

Models ST / ST-B

Model No.	Maximum stroke	Inscribed bore diameter dr Tolerance		Outer d	liameter
				D	Tolerance
ST 6	14	6	+0.018 +0.010	12	0
ST 8 ST 8B	24 8	8	+0.022	15	-0.008
ST 10 ST 10B	30 8	10	+0.013	19	
ST 12 ST 12B	32 8	12	+0.027	23	0 -0.009
ST 16 ST 16B	40 16	16	+0.016	28	
ST 20 ST 20B	54 28	20		32	
ST 25 ST 25B	54 28	25	+0.033 +0.020	37	0 0.011
ST 30 ST 30B	82 44	30		45	
ST 35 ST 35B	92 54	35	+0.041 +0.025	52	0 -0.013
ST 40 ST 40B	108 66	40		60	
ST 45 ST 45B	108 66	45	+0.041 +0.025	65	0
ST 50 ST 50B	138 88	50		72	-0.013
ST 55 ST 55B	138 88	55		80	-
ST 60 ST 60B	138 88	60	+0.049	85	
ST 70 ST 70B	138 88	70	+0.030	95	0
ST 80 ST 80B	132 76	80		110	-0.015
ST 90 ST 90B	132 76	90	+0.058	120	
ST 100 ST 100B	132 76	100	+0.036	130	0 -0.018

Unit: mm

							Basic	Basic static		
	Len	Length						dynamic load rating	load rating	Mass
		Telerance			4	d	-	C	Co	~
	L	Tolerance	L1	L2	l	Q ₀	1	kN	kN	g
	19		13.5	1.1	0.25	—	0.3	0.98	0.23	8
	24		20.1	1.5	0.5	1.5	0.5	0.98 2.06	0.27 0.55	16.4 17.6
	30	0	25.7	1.5	0.5	1.5	0.5	2.35 4.61	0.62 1.27	31.5 34.5
	32	-0.2	27.5	1.5	0.5	1.5	0.5	4.02 8.14	1.08 2.25	47 53.5
	37		32.1	1.5	0.5	1.5	0.5	4.02 8.04	1.27 2.65	77 85
	45		39.8	2	0.5	2	0.5	4.12 8.33	1.57 3.24	109 120
	45		39.8	2	0.5	2	1	4.12 8.14	1.76 3.63	128 142
	65	0 0.3	58.5	2.5	0.5	2.5	1	9.31 18.7	4.12 8.14	240 275
	70		63.5	2.5	0.7	2.5	1.5	9.41 18.7	4.51 9.02	370 410
	80		73.3	2.5	0.7	2.5	1.5	12.5 25	6.18 12.4	570 635
	80	1	73.3	2.5	0.7	2.5	1.5	12.6 25.2	6.76 13.5	625 695
	100	0 0.3	92.4	3	1	3	1.5	16.3 32.5	8.82 17.7	910 1020
	100		92.4	3	1	3	2	16.6 33	9.71 19.3	1270 1380
	100		92.4	3	1	3	2	16.8 33.6	10.5 21	1360 1480
	100		92.4	3	1	3	2	16.9 33.8	11.7 23.3	1530 1670
	100	0	92	3	1.5	3	2	21.3 42.5	15.3 30.6	2220 2430
	100	-0.4	92	3	1.5	3	2	21.7 43.3	16.9 33.7	2440 2670
	100		92	3	1.5	3	2	22 43.9	18.3 36.8	2670 2910

고래옷 136

Models ST···UU/ST···UUB

Model No.	Maximum stroke	Inscribed be	ore diameter	Outer d	liameter	
		dr	Tolerance	D	Tolerance	
ST 8UU	14	8	+0.022	15	0 -0.008	
ST 10UU	16	10	+0.013	19		
ST 12UU	17	12	+0.027	23		
ST 16UU	24	16	+0.016	28	-0.003	
ST 20UU ST 20UUB	32 12	20		32		
ST 25UU ST 25UUB	32 12	25	+0.033 +0.020	37	0 0.011	
ST 30UU ST 30UUB	65 27	30		45		
ST 35UU ST 35UUB	75 37	35		52		
ST 40UU ST 40UUB	91 49	40	+0.041 +0.025	60	0 0.013	
ST 45UU ST 45UUB	91 49	45		65		
ST 50UU ST 50UUB	120 70	50	+0.041 +0.025	72	0	
ST 55UU ST 55UUB	120 70	55		80	-0.013	
ST 60UU ST 60UUB	120 70	60	+0.049	85		
ST 70UU ST 70UUB	120 70	70	+0.030	95	0	
ST 80UU ST 80UUB	114 58	80		110	-0.015	
ST 90UU ST 90UUB	114 58	90	+0.058	120		
ST 100UU ST 100UUB	114 58	100	+0.036	130	0 0.018	

Model ST…UUB (For medium load)

Unit: mm

								Basic dynamic	Basic static load rating	Mass
	Len	Igth Tolerance	L ₁	L ₂	t	d₀	r	load rating C kN	C₀ kN	g
	24		15.3	1.5	0.5	1.5	0.5	0.98	0.27	17
	30	0	18.5	1.5	0.5	1.5	0.5	2.35	0.62	31
	32	0 -02	20.1	1.5	0.5	1.5	0.5	4.02	1.08	49
	37	0.2	24.1	1.5	0.5	1.5	0.5	4.02	1.27	80
	45		30.8	2	0.5	2	0.5	4.12 8.33	1.57 3.24	112 125
	45		30.8	2	0.5	2	1	4.12 8.14	1.76 3.63	132 145
	65		50.1	2.5	0.5	2.5	1	9.31 18.7	4.12 8.14	245 280
	70	0 0.3	55.1	2.5	0.7	2.5	1.5	9.41 18.7	4.51 9.02	375 420
	80		64.9	2.5	0.7	2.5	1.5	12.5 25	6.18 12.4	580 640
	80		64.9	2.5	0.7	2.5	1.5	12.6 25.2	6.76 13.5	635 705
	100		83.4	3	1	3	1.5	16.3 32.5	8.82 17.7	920 1030
	100	0 0.3	83.4	3	1	3	2	16.6 33	9.71 19.3	1280 1400
	100		83.4	3	1	3	2	16.8 33.6	10.5 21	1370 1490
	100		83.4	3	1	3	2	16.9 33.8	11.7 23.3	1540 1680
	100	0	83	3	1.5	3	2	21.3 42.5	15.3 30.6	2240 2450
	100	-0.4	83	3	1.5	3	2	21.7 43.3	16.9 33.7	2470 2700
	100		83	3	1.5	3	2	22 43.9	18.3 36.8	2700 2940

MST Miniature Stroke Model MST

Fig.1 Structure of Miniature Stroke Model MST

Structure and Features

Model MST consists of an ST shaft, ball cage and nut. These components can freely be combined according to the application. The sectional shape is small, the clearance is minimal and the motion is extremely light and smooth. Accordingly, model MST can be used in a variety of small, precision measuring equipment such as optic measuring instrument's spindle, pen plotter, OA equipment, computer terminals, automatic scale, digital length measuring machine and solenoid valve.

[High Accuracy]

Precision steel balls (sphericity in mutual difference: 0.0003 mm) compliant with JIS B 1501 are incorporated in a copper alloy ball cage to ensure high accuracy. The ball cage serves to prevent the balls from falling off with a unique ball-retaining design.

[Highly Durable]

The nut of the ST shaft uses a selected material, and is heat-treated and ground. In addition, the raceways are finished with ultra fine finish. The rows of balls are densely arranged in the ball cage, and the balls are placed so that the ball raceways do not overlap with each other. It enables this model to be used over a long period without wear and to demonstrate high durability.

[Compact Design]

Use of a combination of balls with a 1 mm diameter and a thin nut allows a small sectional shape and space-saving design.

[Minimal Friction Coefficient]

Since the balls are in point-contact with the raceways, rolling loss is minimal and rolling motion with lowfriction is achieved.

Fit

The inner surface of the housing must be finished to H6 to H7, and secured with an adhesive after the nut is inserted.

When press fitting is required, mounting the nut to the hole will reduce the inner diameter. Therefore, be sure to check the inner diameter after press fitting the nut and adjust the shaft diameter so that a correct preload is achieved. Also make sure that the preload must not exceed $-2\mu m$.

Travel Distance of the Ball Cage

The ball cage can travel up to 1/2 of the stroke length (ℓ_s) of the nut or the ST shaft in the same direction.

Model MST

			Ball ca	Nut			
Combined model No.	Model No.	Da	L _m (A)	Permissible load C₀ N	Mass g	Model No.	D
	M3510		10	68.6	0.7	S5710	
MST 3-A•B•C	M3515	1	15	98	1.1	S5720	
	M3520		20	137	1.4	S5730	-0.000
	M4610		10	78.4	0.9	S6810	0
MST 4-A•B•C	M4615	1	15	118	1.4	S6820	
	M4620		20	157	1.9	S6830	-0.000
	M5710		10	98	1.1	S71010	0
MST 5-A•B•C	M5715	1	15	137	1.7	S71020	10 _0 006
	M5720		20	186	2.3	S71030	_0.000
	M6810		10	108	1.2	S81120	
MST 6-A•B•C	M6815	1	15	157	2.0	S81130	
	M6820		20	216	2.6	S81140	_0.011

Note) If the radial clearance needs to be zero or below, add symbol "C1" at the end of the model number.

(Example) MST5-203080 C1

— Combined radial clearance

Symbol for zero or below

—— Combination of models M5720, S71030 and T580.

MST

Unit: mm

Nut						Combined radial		
	ds	L (B)	Mass g	Model No.	dt	Lt (C)	Mass g	clearance µm
	5 ±0.002	10 20 30	1.4 2.9 4.5	T350 T360	3 0 _0.003	50 60	2.8 3.3	-2 to +5
	6 ±0.002	10 20 30	1.7 3.6 5.0	T450 T460	4 0 -0.003	50 60	4.5 5.6	-2 to +5
	7 ±0.002	10 20 30	2.9 6.3 10.0	T550 T580	5 0 _0.003	50 80	7.1 12.6	-2 to +5
	8 ±0.002	20 30 40	7.1 10.0 12.6	T650 T680	6 0 -0.003	50 80	10.0 16.6	–2 to +5

KS/BS

Die-setting Ball Cage Models KS and BS

Fig.1 Structure of Die-setting Ball Cage Model KS

Structure and Features

With models KS and BS, a large number of precision steel balls (sphericity in mutual difference: 0.0005 mm) compliant with JIS B 1501 are incorporated in a lightweight, highly rigid ball cage. The balls are arranged along the circumference of the ball cage in spirals so that the ball raceways do not overlap with each other. It enables these models to be used over a long period without wear and to demonstrate high durability.

In addition, the ball pockets, which hold the balls, are finished with precision and continuously caulked with a unique process, enabling them to prevent the balls from falling. It allows the system to travel smoothly even if the ball cage is longer than the housing.

These ball cages are used in precision press die set, spinning and weaving machine, precision measuring instrument, automatic recorder, medical equipment and various machine tools.

Rated Load and Nominal Life

The rated loads of models KS and BS are indicated in the respective specification tables. Their service lives are obtained using the service life equation for LM Stroke model ST on **page131**.
Fit

When using the Die-setting Ball Cage in the guide unit of the guide post of a precision press die set, normally select a negative clearance in order to increase the accuracy and the ball cage rigidity. Table1 shows typical fitting between the hole and the shaft. Select a combination of a hole and a shaft so that the clearance does not exceed the tolerance value of the radial clearance indicated in the specification table.

Table1 Fitting between Holes and Shaft	
--	--

Tolerance in hole dimensions: D	K5
Dimensional tolerance of the shaft: d	h5

Installation of the Ball Cage

Fig.2 shows examples of mounting the Die-setting Ball Cage.

Fig.2 Example of Installation

Models KS / BS

Unit: mm

	Main dimensions				Radial clearance	Basic load rating		Mass
Combined model No.	dt	D₄ (inch)	ds	Lm	tolerance	C	C₀ kN	q
					μπ			9
KS 1955	19	3	25	55	7	10.3	3.82	31.7
BS 1955	19	3.175 (1/8)	25.35	55	-7	11.7	4.22	33.2
KS 2260	22	3	28	60	-7	10.7	4.22	37.6
BS 2260	22	3.175 (1/8)	28.35	60	-7	12.2	4.71	39.1
KS 2565	25	3	31	65	-7	11.7	5	45.4
BS 2565	25	3.175 (1/8)	31.35	65	-7	13.2	5.59	47.1
KS 2870	28	4	36	70	-9	18	7.65	80.4
BS 2870	28	3.969 (5/32)	35.938	70	-9	17.7	7.55	80.0
KS 3275	32	4	40	75	-9	19.7	9.12	96.5
BS 3275	32	3.969 (5/32)	39.938	75	-9	19.3	8.92	96.0
KS 3880	38	5	48	80	-10	25	12	156
BS 3880	38	4.762 (3/16)	47.525	80	-10	22.5	10.9	150

Note) The outer surface of model BS has a groove to help distinguish it from KS. Shafts for models KS and BS are also manufactured. Contact THK for details.

Model No.

Model Number Coding

Model number configurations differ depending on the model features. Refer to the corresponding sample model number configuration.

[LM Stroke]

Models ST, ST-B, ST…UU and ST…UUB

ST20UUB

Model No.

[Miniature Stroke]

Models M, S, T and MST

• Ball Cage only

Nut only

M4610 Model No. S6820

Model No.

T460 Model No.

• ST shaft only

• Ball cage, nut and ST shaft combinations

MST 4-10 20 60 M

ST shaft outer
diameter
(mm) (B)Nut length
(mm) (B)Using stainless steeldimension
dimension
(mm)Ball cage
length (mm) (A)ST shaft
length (mm) (C)Combined model number
(ball cage):M4610
(nut):S6820
(ST shaft):T460 Combination of these components

Note) The model numbers of ball cage, nut and ST shaft are indicated in the corresponding specification table.

[Die-setting Ball Cage]Models KS and BS

KS3880

Model No.

[Handling]

- (1) Do not disassemble the parts. This will result in loss of functionality.
- (2) Take care not to drop or strike the LM Stroke. Doing so may cause injury or damage. Giving an impact to it could also cause damage to its function even if the product looks intact.
- (3) When handling the product, wear protective gloves, safety shoes, etc., as necessary to ensure safety.

[Precautions on Use]

- (1) With the model ST LM Stroke, intrusion of foreign matter can cause abnormal wear and reduce service life. If there is a risk of foreign material intruding, use a seal or another protective option suited to the usage conditions and surrounding environment. A highly abrasion-resistant synthetic rubber seal (model ST...UU) and dust-proof felt seal with low seal resistance (model ST... DD) are available for the model ST.
- (2) If foreign material such as cutting chips adheres to the product, replenish the lubricant after cleaning the product.
- (3) Do not use the product at temperature of 80°C or higher. Exposure to higher temperatures may cause the resin/rubber parts to deform/be damaged.
- (4) If the product is used in an environment where cutting chips, coolant, corrosive solvents, water, etc., may enter the product, use bellows, covers, etc., to prevent them from entering the product.
- (5) Micro-strokes tend to obstruct oil film to form on the raceway in contact with the rolling element, and may lead to fretting corrosion. Take consideration using grease offering excellent fretting prevention. It is also recommended that a stroke movement corresponding to the length of the ball cage be made on a regular basis to make sure oil film is formed between the raceway and rolling element.
- (6) Do not use undue force when fitting parts (pin, key, etc.) to the product. This may generate pressure marks on the raceway, leading to loss of functionality.
- (7) Insert the shaft straight through the opening. Inserting the shaft at an angle can introduce foreign matter, damage internal components, or cause balls to fall out.
- (8) Using this product with any balls removed may result in premature damage.
- (9) Please contact THK if any balls fall out; do not use the product if any balls are missing.
- (10) If an attached component is insufficiently rigid or mounted incorrectly, the bearing load will be concentrated at one location and performance will decline signifi cantly. Make sure the housing and base are sufficiently rigid, the anchoring bolts are strong enough, and the component is mounted correctly.

Fig.1 Seals used with the LM Stroke

[Lubrication]

- (1) Thoroughly wipe off anti-rust oil and feed lubricant before using the product.
- (2) Do not mix different lubricants. Mixing greases using the same type of thickening agent may still cause adverse interaction between the two greases if they use different additives, etc.
- (3) When using the product in locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, use the grease appropriate for the specification/environment.
- (4) When lubricating the product, apply grease directly on the raceway and stroke the product several times to let the grease spread inside.
- (5) The consistency of grease changes according to the temperature. Take note that the slide resistance of the LM Stroke also changes as the consistency of grease changes.
- (6) After lubrication, the slide resistance of the LM Stroke may increase due to the agitation resistance of grease. Be sure to perform a break-in to let the grease spread fully, before operating the machine.
- (7) Excess grease may scatter immediately after lubrication, so wipe off scattered grease as necessary.
- (8) The properties of grease deteriorate and its lubrication performance drops over time, so grease must be checked and added properly according to the use frequency of the machine.
- (9) The greasing interval varies depending on the use condition and service environment. Set the final lubrication interval/amount based on the actual machine.
- (10) The model ST LM Stroke can be lubricated with either oil or grease. Select the appropriate option in accordance with the DN value. THK recommends lithium grease no. 2.

[Storage]

When storing the LM Stroke, enclose it in a package designated by THK and store it in a room while avoiding high temperature, low temperature and high humidity.

[Disposal]

Dispose of the product properly as industrial waste.

Linear Bushing Series

• The photo may differ slightly in appearance from the actual product.

- The appearance and specifications of the product are subject to change without notice. Contact THK before placing an order.
- Although great care has been taken in the production of this catalog, THK will not take any responsibility for damage resulting from typographical errors or omissions.
- For the export of our products or technologies and for the sale for exports, THK in principle complies with the foreign exchange law and the Foreign Exchange and Foreign Trade Control Law as well as other relevant laws.

For export of THK products as single items, contact THK in advance.

THK CO., LTD.

Head Office 3-11-6 Nishigotanda, Shinagawa-ku, Tokyo 141-8503 JAPAN International Sales Department Phone:+81-3-5434-0351 Fax:+81-3-5434-0353

Global site : http://www.thk.com/

Fax:+46-8-445-7639

Fax:+43-7229-51400-79

Fax:+34-93-652-5746

- **OSWEDEN OFFICE**
- Phone:+46-8-445-7630 AUSTRIA OFFICE
- Phone:+43-7229-51400
- **OSPAIN OFFICE** Phone:+34-93-652-5740
- **TURKEY OFFICE** Phone:+90-216-362-4050 Fax:+90-216-569-7150
- PRAGUE OFFICE Phone:+420-2-41025-100 Fax:+420-2-41025-199
- MOSCOW OFFICE Phone:+7-495-649-80-47 Fax:+7-495-649-80-44
- THK Europe B.V.
- **EINDHOVEN OFFICE**
- PARIS OFFICE Phone:+33-1-7425-3800 Fax +33-1-7425-3799 CHINA
- THK (CHINA) CO.,LTD.
- HEADQUARTERS
- Phone:+86-411-8733-7111 Fax:+86-411-8733-7000 **SHANGHAI OFFICE**
- Phone:+86-28-8526-8025 Fax:+86-28-8525-6357 GUANGZHOU OFFICE
 - Fax:+86-20-3801-0456
- Phone:+86-755-2642-9587 Fax:+86-755-2642-9604

OXIAN OFFICE

Phone:+86-29-8834-1712	Fax:+86-29-8834-1710
THK (SHANGHAI) CO.,LTD.	
Phone:+86-21-6275-5280	Fax:+86-21-6219-9890
TAIWAN	
THK TAIWAN CO., LTD.	
TAIPEI HEAD OFFICE	
Phone:+886-2-2888-3818	Fax:+886-2-2888-3819
TAICHUNG OFFICE	
Phone:+886-4-2359-1505	Fax:+886-4-2359-1506
TAINAN OFFICE	
Phone:+886-6-289-7668	Fax:+886-6-289-7669
KOREA	
SEOUL REPRESENTATIVE	OFFICE
Phone:+82-2-3468-4351	Fax:+82-2-3468-4353
SINGAPORE	
THK LM System Pte. Ltd.	
Phone:+65-6884-5500	Fax:+65-6884-5550
THAILAND	
THK RHYTHM(THAILAND) CO	., LTD. LM System Division
Bangkok Branch	
Phone:+66-2751-3001	Fax:+66-2751-3003
INDIA	
THK India Pvt. Ltd.	
HEADQUARTERS & Bang	alore Branch
Phone:+91-80-2340-9934	Fax:+91-80-2340-9937
Pune Branch	
Phone:+91-20-4120-8/42	
Unennal Branch	

All rights reserved

- Phone:+91-44-4042-3132
- Ahmedabad Branch
- Delhi Branch
- Phone:+91-12-4676-8695

201608000 E27

NORTH AMERICA

THK America, Inc.

- **HEADQUARTERS** Phone:+1-847-310-1111 Fax:+1-847-310-1271
- **CHICAGO OFFICE** Phone:+1-847-310-1111
- Fax:+1-847-310-1182 **NORTH EAST OFFICE** Fax:+1-631-244-1565
- Phone:+1-631-244-1565 ATLANTA OFFICE
- Phone:+1-770-840-7990 Fax:+1-770-840-7897 LOS ANGELES OFFICE
- Phone:+1-949-955-3145 Fax:+1-949-955-3149
- **SAN FRANCISCO OFFICE** Phone:+1-925-455-8948 Fax:+1-925-455-8965
- DETROIT OFFICE Phone:+1-248-858-9330
- Fax:+1-248-858-9455 **•**TORONTO OFFICE
- Phone:+1-905-820-7800 Fax:+1-905-820-7811 SOUTH AMERICA
- THK BRAZIL INDUSTRIA E COMERCIO LTDA.
- Phone:+55-11-3767-0100 Fax:+55-11-3767-0101 EUROPE
- THK GmbH
- EUROPEAN HEADQUARTERS
- Phone:+49-2102-7425-555 Fax:+49-2102-7425-556 DÜSSELDORF OFFICE
- Phone:+49-2102-7425-0 Fax:+49-2102-7425-299 **STUTTGART OFFICE**
- Phone:+49-7141-4988-500 Fax:+49-7141-4988-888 •U.K. OFFICE
- Phone:+44-1384-47-1550 Fax:+44-1384-47-1551 **OITALY OFFICE**

- - Phone:+91-79-6134-4925

- - Phone:+86-20-8523-8418
- Phone:+86-21-6219-3000 Fax:+86-21-6219-9890 ●BEIJING OFFICE
 - - Phone:+86-10-8441-7277 Fax:+86-10-6590-3557
- CHENGDU OFFICE
- **SHENZHEN OFFICE**

Phone:+31-040-290-9500 Fax:+31-040-290-9599 THK France S.A.S.